Altair AcuSolve EDEM Coupling

Figure 1.


Note: The detailed DEM simulation sequence is not shown here. For detailed information about the DEM simulation sequence, refer to the EDEM help manual.
Note:
  • The temperature and species equations are only solved when the heat transfer and/or mass transfer physics models are active.
  • Since the DEM time step is usually multiple orders lower than the CFD time step, the DEM solver loop is repeated multiple times per single CFD time step to ensure that the physical time is synchronized in both the solvers.
  • For coupled simulations, the data is always exchanged in SI units.
  • For unidirectional coupling, once the coupling forces are calculated and shared with EDEM, the fluid momentum equation is not updated with the coupling force because the effect of particles on fluid is ignored.

AcuSolve-EDEM coupling uses the Eulerian-Lagrangian approach for modeling fluid-particle flows where the fluid transport equations are solved in a Eulerian framework and the dispersed phase is represented as Lagrangian particles. The fluid phase is solved based on the volume-averaged Navier-Stokes equations and the Discrete Element Method (DEM) is used for computing the motion of the solid phase. This coupling strategy allows you to study the momentum and heat transfer at the individual particle scale.

Governing Equations

The volume-averaged Navier-Stokes equations for CFD-DEM momentum coupling are given by:

( ε f ρ f ) t + ( ρ f ε f v f ) = 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaacIcacqaH1oqzpaWaaSbaaSqaa8qa caWGMbaapaqabaGccqaHbpGCdaWgaaWcbaGaamOzaaqabaGccaGGPa aabaWdbiabgkGi2kaadshaaaGaey4kaSIaey4bIeTaeyyXICTaaiik a8aacqaHbpGCdaWgaaWcbaGaamOzaaqabaGcpeGaeqyTdu2damaaBa aaleaapeGaamOzaaWdaeqaaGqabOWdbiaa=zhadaWgaaWcbaGaamOz aaqabaGcpaGaaiyka8qacqGH9aqpcaaIWaaaaa@514F@
t ε f ρ f v f + ρ f ε f v f v f = ε f p ε f   τ f + ρ f ε f g F p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaqa daWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbi abeg8aYnaaBaaaleaacaWGMbaabeaaieqak8aacaWF2bWaaSbaaSqa aiaadAgaaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiabgEGirlabgw Sixpaabmaapaqaa8qacqaHbpGCdaWgaaWcbaGaamOzaaqabaGccqaH 1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGccaWF2bWaaSbaaSqaai aadAgaaeqaaOGaa8NDamaaBaaaleaacaWGMbaabeaaaOWdbiaawIca caGLPaaacqGH9aqpcqGHsislcqaH1oqzpaWaaSbaaSqaa8qacaWGMb aapaqabaGcpeGaey4bIeTaamiCaiabgkHiTiabew7aL9aadaWgaaWc baWdbiaadAgaa8aabeaak8qacaGGGcGaey4bIeTaeyyXIC9aaeWaa8 aabaaccmWdbiab+r8a0naaBaaaleaacaWGMbaabeaaaOGaayjkaiaa wMcaaiabgUcaRiabeg8aYnaaBaaaleaacaWGMbaabeaakiabew7aL9 aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacaWFNbGaeyOeI0ccbmGa a0Nra8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@740B@

where,
  • ε f   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiaacckaaaa@3A33@ is the fluid volume fraction or porosity;
  • v f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabiaa=zhada WgaaWcbaGaamOzaaqabaaaaa@3800@ is the fluid velocity;
  • ρ f   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiaacckaaaa@3A4C@ is the fluid density;
  • p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@36FE@ is the fluid pressure;
  • τ f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8hXdq3aaSbaaSqaaiaadAgaaeqaaaaa@38ED@ is the viscous stress tensor;
  • g MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa83zaaaa@36FB@ is the gravity vector;
  • F p =  1 V cell i f d + f l i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqGH9aqpcaqG GcWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadAfapaWaaSbaaSqaa8 qacaWGJbGaamyzaiaadYgacaWGSbaapaqabaaaaOWdbmaavababeWc paqaa8qacaWGPbaabeqdpaqaa8qacqGHris5aaGcdaqadaWdaeaape GaamOza8aadaahaaWcbeqaa8qacaWGKbaaaOGaey4kaSIaamOza8aa daahaaWcbeqaa8qacaWGSbaaaaGccaGLOaGaayzkaaWdamaaBaaale aapeGaamyAaaWdaeqaaaaa@4BC0@ is the particle-fluid force exchange term;
  • V cell MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaadogacaWGLbGaamiBaiaadYgaa8aa beaaaaa@3AF2@ is the volume of fluid cell;
  • f d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaWGKbaaaaaa@3829@ is the fluid drag force;
  • f l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaWGSbaaaaaa@3831@ is the fluid lift force.
Note: Wherever applicable the following notations are used throughout the document. The subscript f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaaaa@36F4@ denotes a fluid property, p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@36FE@ denotes a particle property and i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@36F7@ denotes that the calculation is done for an individual particle.
The drag force on each particle is given by:
f i d = β D V p d p ( v s l i p ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWGPbaabaGaamizaaaakiabg2da9iabek7aInaaCaaaleqa baGaamiraaaakmaalaaabaGaamOvamaaBaaaleaacaWGWbaabeaaaO qaaiaadsgadaWgaaWcbaGaamiCaaqabaaaaOGaaiikaiaahAhadaWg aaWcbaGaam4CaiaadYgacaWGPbGaamiCaaqabaGccaGGPaaaaa@4717@
  • v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaam4CaiaadYgacaWGPbGaamiCaaqabaaaaa@3AE0@ is the slip velocity ( v f v p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWH2bWaaSbaaSqaaiaadAgaaeqaaOGaeyOeI0IaaCODamaaBaaa leaacaWGWbaabeaaaaa@3B40@ )
  • V p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGWbaabeaaaaa@37F0@ is the particle volume
  • d p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGWbaabeaaaaa@37FE@ is the particle diameter

Where the formulation of the interphase momentum exchange coefficient ( β D MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaW baaSqabeaacaWGebaaaaaa@388B@ ) varies based on the drag model. The drag models available in AcuSolve-EDEM coupling are listed below.

Drag Models

  1. Ergun-Wen Yu

    The momentum exchange coefficient for the Ergun Wen Yu drag model is given by,

    β E r g u n D = A ( 1 ε f ) μ f ε f φ 2 d p + B ρ f | v s l i p | φ ε f < 0.8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGydaqhaaWcbaGaamyraiaadkhacaWGNbGaamyDaiaad6ga aeaacaWGebaaaOGaeyypa0ZaaSaaaeaacaWGbbGaaiikaiaaigdacq GHsislcqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaaiyk a8aacqaH8oqBdaWgaaWcbaWdbiaadAgaa8aabeaaaOWdbeaacqaH1o qzpaWaaSbaaSqaa8qacaWGMbaapaqabaGccqaHgpGAdaahaaWcbeqa aiaaikdaaaGcpeGaamizamaaBaaaleaacaWGWbaabeaaaaGccqGHRa WkdaWcaaqaaiaadkeacqaHbpGCpaWaaSbaaSqaa8qacaWGMbaapaqa baGcpeGaaiiFa8aacaWH2bWaaSbaaSqaaiaadohacaWGSbGaamyAai aadchaaeqaaOWdbiaacYhaaeaacqaHgpGAaaGaaGzbVlaaywW7caaM f8UaaGzbV=aacqaH1oqzdaWgaaWcbaWdbiaadAgaa8aabeaak8qacq GH8aapcaaIWaGaaiOlaiaaiIdaaaa@6A35@
    β WenYu D = 3 4 C d ρ f v slip ε f 1.65 ε f 0.8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGydaqhaaWcbaGaam4vaiaadwgacaWGUbGaamywaiaadwha aeaacaWGebaaaOGaeyypa0ZaaSaaaeaacaaIZaaabaGaaGinaaaaca WGdbWaaSbaaSqaaiaadsgaaeqaaOGaeqyWdi3aaSbaaSqaaiaadAga aeqaaOWaaqWaaeaapaGaaCODamaaBaaaleaacaWGZbGaamiBaiaadM gacaWGWbaabeaaaOWdbiaawEa7caGLiWoacqaH1oqzdaqhaaWcbaGa amOzaaqaaiabgkHiTiaaigdacaGGUaGaaGOnaiaaiwdaaaGccaaMf8 UaaGzbVlaaywW7caaMf8UaaGzbV=aacqaH1oqzdaWgaaWcbaWdbiaa dAgaa8aabeaakiabgwMiZ+qacaaIWaGaaiOlaiaaiIdaaaa@6242@

    Where, the coefficients A and B have a default value of 150 and 1.75 respectively and can be modified by you while specifying the model inputs. v p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDa8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3859@ is the particle velocity and d p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3841@ is the particle’s volume equivalent sphere diameter. φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@37B1@ is the sphericity of the particle.

    C d =  0 Re i =0 24 Re i 1+0.15 Re i 0.687   Re i 1000 0.44  Re i >1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaiqaa8aabaqbaeqabiqaaaabaeqabaGaaGimaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaGzbVlaaywW7ciGGsbGaaiyzamaaBaaaleaacaWGPbaabe aakiabg2da9iaaicdaa8qabaWaaSaaa8aabaWdbiaaikdacaaI0aaa paqaa8qacaqGsbGaaeyzamaaBaaaleaacaWGPbaabeaaaaGcdaqada WdaeaapeGaaGymaiabgUcaRiaaicdacaGGUaGaaGymaiaaiwdacaaM c8UaaeOuaiaabwgapaWaa0baaSqaaiaadMgaaeaapeGaaGimaiaac6 cacaaI2aGaaGioaiaaiEdaaaaakiaawIcacaGLPaaacaGGGcGaaGzb VlaaywW7caaMf8UaaGzbVlaayIW7caaMi8UaaGjcVlaabkfacaqGLb WaaSbaaSqaaiaadMgaaeqaaOGaeyizImQaaGymaiaaicdacaaIWaGa aGimaaaapaqaa8qacaaIWaGaaiOlaiaaisdacaaI0aGaaiiOaiaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaeOuaiaabwgadaWgaaWcbaGaamyAaaqabaGccq GH+aGpcaaIXaGaaGimaiaaicdacaaIWaaaaaGaay5Eaaaaaa@97EE@

    Here Re i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabwgadaWgaaWcbaGaamyAaaqabaaaaa@38E0@ is the particle Reynolds number and C d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaaaaa@3814@ is the drag coefficient.

    Re i = ρ f ε f v s l i p d p μ f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOuaiaacwgadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcaaWd aeaapeGaeqyWdi3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabew 7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qadaabdaWdaeaacaWH 2bWaaSbaaSqaaiaadohacaWGSbGaamyAaiaadchaaeqaaaGcpeGaay 5bSlaawIa7aiaadsgapaWaaSbaaSqaa8qacaWGWbaapaqabaaakeaa peGaeqiVd02damaaBaaaleaapeGaamOzaaWdaeqaaaaaaaa@4DD7@

    The Ergun-Wen-Yu model is one of the most widely used drag models and is recommended for most of the fluid-particle flows since it works well for both dense phase and dilute phase regimes. In this model, the Ergun equation is used for fluid volume fractions less than 0.8 and the Wen-Yu equation for fluid volume fractions greater than 0.8.

  2. Di Felice

    The momentum exchange coefficient for the DiFelice drag model is given by,

    β d i F e l i c e D = 3 4 C d ρ f v s l i p ε f ( 2 χ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGydaqhaaWcbaGaamizaiaadMgacaWGgbGaamyzaiaadYga caWGPbGaam4yaiaadwgaaeaacaWGebaaaOGaeyypa0ZaaSaaaeaaca aIZaaabaGaaGinaaaacaWGdbWaaSbaaSqaaiaadsgaaeqaaOGaeqyW di3aaSbaaSqaaiaadAgaaeqaaOWaaqWaaeaapaGaaCODamaaBaaale aacaWGZbGaamiBaiaadMgacaWGWbaabeaaaOWdbiaawEa7caGLiWoa cqaH1oqzdaqhaaWcbaGaamOzaaqaaiaacIcacaaIYaGaeyOeI0Iaeq 4XdmMaaiykaaaaaaa@5704@
    χ = 0 Re i = 0 3.7 0.65 e ( 0.5 ( 1.5 log 10 Re i ) 2 ) Re i 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaameaaaaaa aaa8qacqaHhpWycqGH9aqpkmaaceaaeaqabeaacaaIWaGaaGzbVlaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaciOuaiaacwgadaWg aaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaaabaqcaaSaaG4maiaac6 cacaaI3aGaeyOeI0IaaGimaiaac6cacaaI2aGaaGynaiaadwgakmaa CaaajeaWbeqaaiaacIcacqGHsislcaaIWaGaaiOlaiaaiwdacaGGOa GaaGymaiaac6cacaaI1aGaeyOeI0IaciiBaiaac+gacaGGNbWcdaWg aaqccaCaaiaaigdacaaIWaaabeaajeaWciGGsbGaaiyzaSWaaSbaaK GaahaacaWGPbaabeaajeaWcaGGPaWcdaahaaqccaCabeaacaaIYaaa aKqaalaacMcaaaGccaaMf8UaaGzbVlaaywW7caaMf8UaciOuaiaacw gadaWgaaWcbaGaamyAaaqabaGccqGHGjsUcaaIWaaaaiaawUhaaaaa @81A5@
    C d = 0 Re i = 0 0.63 + 4.8 Re i 0.5 2 Re i 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaakeaaaaaa aaa8qacaWGdbGcdaWgaaWcbaGaamizaaqabaGccqGH9aqpdaGabaab aeqabaGaaGimaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl aaywW7caaMf8UaaGPaVlaaysW7caaMc8UaaGPaVlaayIW7ciGGsbGa aiyzamaaBaaaleaacaWGPbaabeaakiabg2da9iaaicdaaeaadaqada qaaiaaicdacaGGUaGaaGOnaiaaiodacqGHRaWkcaaI0aGaaiOlaiaa iIdacaaMe8UaciOuaiaacwgadaqhaaWcbaGaamyAaaqaaiabgkHiTi aaicdacaGGUaGaaGynaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiaaywW7caaMf8UaciOuaiaacwgadaWgaaWcbaGaamyAaa qabaGccqGHGjsUcaaIWaaaaiaawUhaaaaa@6CE8@

    Unlike the Ergun-Wen-Yu correlation, the Di Felice correlation is a monotonic function of Reynolds number and porosity and does not have the step change in drag force evaluation.

  3. Beetstra

    The momentum exchange coefficient for the Beetstra drag model is given by,

    β B e e t s t r a D = A μ f ε f d p + B μ f Re i d p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGydaqhaaWcbaGaamOqaiaadwgacaWGLbGaamiDaiaadoha caWG0bGaamOCaiaadggaaeaacaWGebaaaOGaeyypa0ZaaSaaaeaaca WGbbWdaiabeY7aTnaaBaaaleaapeGaamOzaaWdaeqaaaGcpeqaaiab ew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacaWGKbWdamaaDa aaleaapeGaamiCaaWdaeaaaaaaaOWdbiabgUcaRmaalaaabaGaamOq a8aacqaH8oqBdaWgaaWcbaWdbiaadAgaa8aabeaak8qaciGGsbGaai yzamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgadaqhaaWcbaGaamiC aaqaaaaaaaaaaa@541E@
    A = 180 ( 1 ε f ) + 18 ε f 4 1 + 1.5 ( 1 ε f ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2 da9iaaigdacaaI4aGaaGimaiaacIcacaaIXaGaeyOeI0IaeqyTdu2a aSbaaSqaaiaadAgaaeqaaOGaaiykaiabgUcaRiaaigdacaaI4aGaeq yTdu2aa0baaSqaaiaadAgaaeaacaaI0aaaaOWaaeWaaeaacaaIXaGa ey4kaSIaaGymaiaac6cacaaI1aWaaOaaaeaacaGGOaGaaGymaiabgk HiTiabew7aLnaaBaaaleaacaWGMbaabeaakiaacMcaaSqabaaakiaa wIcacaGLPaaaaaa@50E6@
    B= 0.31( ε f 1 +3(1 ε f ) ε f +8.4 Re i 0.343 ) 1+ 10 3(1 ε f ) Re i 2 ε f 2.5 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabg2 da9maalaaabaGaaGimaiaac6cacaaIZaGaaGymaiaacIcacqaH1oqz daqhaaWcbaGaamOzaaqaaiabgkHiTiaaigdaaaGccqGHRaWkcaaIZa GaaiikaiaaigdacqGHsislcqaH1oqzdaWgaaWcbaGaamOzaaqabaGc caGGPaGaeqyTdu2aaSbaaSqaaiaadAgaaeqaaOGaey4kaSIaaGioai aac6cacaaI0aGaciOuaiaacwgadaqhaaWcbaGaamyAaaqaaiabgkHi TiaaicdacaGGUaGaaG4maiaaisdacaaIZaaaaOGaaiykaaqaaiaaig dacqGHRaWkcaaIXaGaaGimamaaCaaaleqabaGaaG4maiaacIcacaaI XaGaeyOeI0IaeqyTdu2aaSbaaWqaaiaadAgaaeqaaSGaaiykaaaaki GackfacaGGLbWaa0baaSqaaiaadMgaaeaacaaIYaGaeqyTdu2aaSba aWqaaiaadAgaaeqaaSGaeyOeI0IaaGOmaiaac6cacaaI1aaaaaaaaa a@6887@

  4. Rong

    The momentum exchange coefficient for the Rong drag model is given by,

    β Rong D = 150(1 ε f ) μ f ε f d p φ 2 + 3 4 ρ f v slip φ ε f <0.8 3 4 C d ρ f v slip ε f 2σλ ε f 0.8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aa0baaSqaaiaadkfacaWGVbGaamOBaiaadEgaaeaacaWG ebaaaOGaeyypa0Zaaiqaaqaabeqaa8aadaWcaaqaa8qacaaIXaGaaG ynaiaaicdacaGGOaGaaGymaiabgkHiT8aacqaH1oqzdaWgaaWcbaGa amOzaaqabaGccaGGPaGaeqiVd02aaSbaaSqaaiaadAgaaeqaaaGcba GaeqyTdu2aaSbaaSqaaiaadAgaaeqaaOGaamizamaaBaaaleaacaWG WbaabeaakiabeA8aQnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkda WcaaqaaiaaiodaaeaacaaI0aaaamaalaaabaWdbiabeg8aYnaaBaaa leaacaWGMbaabeaakmaaemaapaqaaiaahAhadaWgaaWcbaGaam4Cai aadYgacaWGPbGaamiCaaqabaaak8qacaGLhWUaayjcSdaapaqaaiab eA8aQbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaxMaacqaH1oqzdaWgaaWcbaGaamOzaaqabaGccqGH8aap caaIWaGaaiOlaiaaiIdaa8qabaWaaSaaaeaacaaIZaaabaGaaGinaa aacaWGdbWdamaaBaaaleaapeGaamizaaWdaeqaaOWdbiabeg8aYnaa BaaaleaacaWGMbaabeaakmaaemaapaqaaiaahAhadaWgaaWcbaGaam 4CaiaadYgacaWGPbGaamiCaaqabaaak8qacaGLhWUaayjcSdGaeqyT du2damaaDaaaleaapeGaamOzaaWdaeaapeGaaGOmaiabgkHiTiabeo 8aZjabgkHiTiabeU7aSbaak8aacaWLjaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaxMaacqaH1oqzdaWgaaWc baGaamOzaaqabaGccqGHLjYScaaIWaGaaiOlaiaaiIdaaaWdbiaawU haaaaa@AC4E@

    where,
    • σ = 2.65 ε f + 1 5.3 3.5 ε f   ε f 2 e ( 1.5 log 10 Re i ) 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyypa0JaaGOmaiaac6cacaaI2aGaaGynamaabmaapaqa a8qacqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaS IaaGymaaGaayjkaiaawMcaaiabgkHiTmaabmaapaqaa8qacaaI1aGa aiOlaiaaiodacqGHsislcaaIZaGaaiOlaiaaiwdacqaH1oqzpaWaaS baaSqaa8qacaWGMbaapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiab ew7aL9aadaqhaaWcbaWdbiaadAgaa8aabaWdbiaaikdaaaGcpaGaaG PaV=qacaWGLbWdamaaCaaaleqabaWdbmaadmaapaqaa8qacqGHsisl daWcaaWdaeaapeGaaiikaiaaigdacaGGUaGaaGynaiabgkHiTiGacY gacaGGVbGaai4za8aadaWgaaadbaWdbiaaigdacaaIWaaapaqabaWc peGaaeOuaiaabwgadaWgaaadbaGaamyAaaqabaWccaGGPaWdamaaCa aameqabaWdbiaaikdaaaaal8aabaWdbiaaikdaaaaacaGLBbGaayzx aaaaaaaa@65E1@
    • λ = 1 φ C D e 0.5 3.5 log 10 Re i 2   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHsislcqaHgpGA aiaawIcacaGLPaaadaqadaWdaeaapeGaam4qaiabgkHiTiaadseaca aMb8UaaGzaVlaaykW7caaMc8Uaamyza8aadaahaaWcbeqaa8qacqGH sislcaaIWaGaaiOlaiaaiwdadaqadaWdaeaapeGaaG4maiaac6caca aI1aGaeyOeI0IaciiBaiaac+gacaGGNbWdamaaBaaameaapeGaaGym aiaaicdaa8aabeaal8qacaqGsbGaaeyzamaaBaaameaacaWGPbaabe aaaSGaayjkaiaawMcaa8aadaahaaadbeqaa8qacaaIYaaaaSGaaiiO aaaaaOGaayjkaiaawMcaaaaa@5B11@
    • C =   39 φ 20.6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9iaacckacaaIZaGaaGyoaiabeA8aQjabgkHiTiaa ikdacaaIWaGaaiOlaiaaiAdaaaa@400C@
    • D = 101.8 φ 0.81 2 + 2.4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iaaigdacaaIWaGaaGymaiaac6cacaaI4aWaaeWa a8aabaWdbiabeA8aQjabgkHiTiaaicdacaGGUaGaaGioaiaaigdaai aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa ikdacaGGUaGaaGinaaaa@46D7@
    • φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdOgaaa@37C6@ is the sphericity of the particle

    Since the sphericity of the particle is considered while calculating the drag force, this model is strongly recommended for non-spherical particles compared to the other models available in AcuSolve.

  5. Syamlal-O’Brien

    The momentum exchange coefficient for the Syamlal-O’Brien drag model is given by,

    β S y a m l a l D = 3 4 C d ε f ρ f v s l i p v r , p 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaWGtbGaamyEaiaadggacaWGTbGaamiBaiaadggacaWGSbaa baGaamiraaaakabaaaaaaaaapeGaeyypa0ZaaSaaaeaacaaIZaaaba GaaGinaaaadaWcaaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaadsga a8aabeaak8qacqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGccq aHbpGCdaWgaaWcbaGaamOzaaqabaGcdaabdaqaaiaahAhadaWgaaWc baGaam4CaiaadYgacaWGPbGaamiCaaqabaaakiaawEa7caGLiWoaae aaieqapeGaa8NDa8aadaqhaaWcbaWdbiaadkhacaGGSaGaamiCaaWd aeaapeGaaGOmaaaaaaaaaa@56D3@

    where,

    C d =  0 Re i =0 0.63+ 4.8 Re i v r,p 2 Re i 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaiqaaqaabeqaaiaaicdacaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ciGG sbGaaiyzamaaBaaaleaacaWGPbaabeaakiabg2da9iaaicdaaeaada qadaWdaeaapeGaaGimaiaac6cacaaI2aGaaG4maiabgUcaRmaalaaa paqaa8qacaaI0aGaaiOlaiaaiIdaa8aabaWdbmaakaaapaqaa8qada WccaWdaeaapeGaaeOuaiaabwgapaWaaSbaaSqaa8qacaWGPbaapaqa baaakeaaieqapeGaa8NDa8aadaWgaaWcbaWdbiaadkhacaGGSaGaam iCaaWdaeqaaaaaa8qabeaaaaaakiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGOmaaaak8aacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl GackfacaGGLbWaaSbaaSqaaiaadMgaaeqaaOGaeyiyIKRaaGimaaaa peGaay5Eaaaaaa@7160@
    v r , p = 0.5 A 0.06 Re i + 0.0036 Re i 2 + 0.12 Re i 2 B A + A 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDa8aadaWgaaWcbaWdbiaadkhacaGGSaGaamiCaaWdaeqa aOWdbiabg2da9iaaicdacaGGUaGaaGynamaabmaapaqaa8qacaWGbb GaeyOeI0IaaGimaiaac6cacaaIWaGaaGOnaiaabkfacaqGLbWdamaa BaaaleaapeGaamyAaaWdaeqaaOWdbiabgUcaRmaakaaapaqaa8qada qadaWdaeaapeGaaGimaiaac6cacaaIWaGaaGimaiaaiodacaaI2aGa ciOuaiaacwgadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakiaawIcaca GLPaaacqGHRaWkcaaIWaGaaiOlaiaaigdacaaIYaGaaeOuaiaabwga paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbiaaik dacaWGcbGaeyOeI0IaamyqaaGaayjkaiaawMcaaiabgUcaRiaadgea paWaaWbaaSqabeaapeGaaGOmaaaaaeqaaaGccaGLOaGaayzkaaaaaa@5FDF@
    A =   ε f 4.14 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaiabg2da9iaacckacqaH1oqzpaWaa0baaSqaa8qacaWGMbaa paqaa8qacaaI0aGaaiOlaiaaigdacaaI0aaaaaaa@3EDF@
    B =   0.8 ε f 1.28   ε f 0.85 ε f 2.65   ε f > 0.85 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiabg2da9iaacckadaGabaWdaeaafaqabeGabaaabaWdbiaa icdacaGGUaGaaGioaiabew7aL9aadaqhaaWcbaWdbiaadAgaa8aaba WdbiaaigdacaGGUaGaaGOmaiaaiIdaaaGccaGGGcGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHKj YOcaaIWaGaaiOlaiaaiIdacaaI1aaapaqaa8qacqaH1oqzpaWaa0ba aSqaa8qacaWGMbaapaqaa8qacaaIYaGaaiOlaiaaiAdacaaI1aaaaO GaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGccq GH+aGppeGaaGimaiaac6cacaaI4aGaaGynaiaaykW7aaaacaGL7baa aaa@9ECD@

  6. Wen-Yu
    The momentum exchange coefficient for the Wen-Yu drag model is given by,
    β W e n Y u D =   3 4 C d ε f 1.65 ρ f v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaWGxbGaamyzaiaad6gacaWGzbGaamyDaaqaaiaadseaaaGc qaaaaaaaaaWdbiabg2da9iaacckadaWcaaqaaiaaiodaaeaacaaI0a aaa8aacaWGdbWaaSbaaSqaaiaadsgaaeqaaOWdbiabew7aL9aadaqh aaWcbaWdbiaadAgaa8aabaWdbiabgkHiTiaaigdacaGGUaGaaGOnai aaiwdaaaGcpaGaeqyWdi3aaSbaaSqaaiaadAgaaeqaaOWaaqWaaeaa caWH2bWaaSbaaSqaaiaadohacaWGSbGaamyAaiaadchaaeqaaaGcca GLhWUaayjcSdaaaa@54E9@


  7. Schiller Nauman

    The momentum exchange coefficient for the Schiller Nauman drag model is given by,

    β S c h i l l e r D =   3 4 C d ρ f v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaWGtbGaam4yaiaadIgacaWGPbGaamiBaiaadYgacaWGLbGa amOCaaqaaiaadseaaaGcqaaaaaaaaaWdbiabg2da9iaacckadaWcaa qaaiaaiodaaeaacaaI0aaaa8aacaWGdbWaaSbaaSqaaiaadsgaaeqa aOGaeqyWdi3aaSbaaSqaaiaadAgaaeqaaOWaaqWaaeaacaWH2bWaaS baaSqaaiaadohacaWGSbGaamyAaiaadchaaeqaaaGccaGLhWUaayjc Sdaaaa@50B6@
    C d = 0 Re i = 0 24 1 + 0.15 Re i 0.687 Re i 1000 0.44 Re i > 1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGKbaabeaakiabg2da9maaceaaeaqabeaacaaIWaGaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaciOuaiaacwgadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaaa baGaaGOmaiaaisdadaqadaqaaiaaigdacqGHRaWkcaaIWaGaaiOlai aaigdacaaI1aGaciOuaiaacwgadaqhaaWcbaGaamyAaaqaaiaaicda caGGUaGaaGOnaiaaiIdacaaI3aaaaaGccaGLOaGaayzkaaGaaGzbVl aaywW7ciGGsbGaaiyzamaaBaaaleaacaWGPbaabeaakiabgsMiJkaa igdacaaIWaGaaGimaiaaicdaaeaacaaIWaGaaiOlaiaaisdacaaI0a GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7 ciGGsbGaaiyzamaaBaaaleaacaWGPbaabeaakiabg6da+iaaigdaca aIWaGaaGimaiaaicdaaaGaay5Eaaaaaa@7C48@

    The drag force calculated does not consider the effect of surrounding particles, that is, volume fraction is not accounted for, and hence this model is strictly valid only for dilute phase flows.

Non-Spherical Drag Coefficient Models

The effect of the particle’s shape can be taken into account by using non-spherical drag coefficient models. There are two types of models available in AcuSolve which are listed below. If the non-spherical drag coefficient model is set to none then the particles are assumed to be of spherical shape. But when the drag coefficient model is set to either of the models listed below, the drag coefficient in the drag models will be replaced by the non-spherical drag coefficient.
  1. Isometric (Haider Levenspiel)

    In this model the drag coefficient is a function of particle Reynolds number and sphericity. The instantaneous orientation of the particle is not considered. This type of model is applicable for particles with shapes closer to a sphere, such as rocks and some grains (beans), and when the orientation of the particles is not critical. The user inputs required for this model are particle’s volume and sphericity. The Haider-Levenspiel correlation is given by:

    C d n s =   24 Re c 1 + A 1 Re c A 2 A 3 1 + A 4 Re c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaakmaaCaaaleqabaWd biaad6gacaWGZbaaaOGaeyypa0JaaiiOamaalaaapaqaa8qacaaIYa GaaGinaaWdaeaapeGaaeOuaiaabwgapaWaa0baaSqaaiaadogaaeaa aaaaaOWdbmaadmaapaqaa8qacaaIXaGaey4kaSIaamyqa8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaaeOuaiaabwga paWaa0baaSqaaiaadogaaeaaaaaak8qacaGLOaGaayzkaaWdamaaCa aaleqabaWdbiaadgeapaWaaSbaaWqaa8qacaaIYaaapaqabaaaaaGc peGaay5waiaaw2faamaalaaapaqaa8qacaWGbbWdamaaBaaaleaape GaaG4maaWdaeqaaaGcbaWdbmaabmaabaGaaGymaiabgUcaRmaaliaa paqaa8qacaWGbbWdamaaBaaaleaapeGaaGinaaWdaeqaaaGcbaWdbi aabkfacaqGLbWdamaaDaaaleaacaWGJbaabaaaaaaaaOWdbiaawIca caGLPaaaaaaaaa@5836@
    Re c = min ( Re i , 2.5999 e 5 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOuaiaacw gadaWgaaWcbaGaam4yaaqabaGccqGH9aqpciGGTbGaaiyAaiaac6ga caaMc8UaaiikaiGackfacaGGLbWaaSbaaSqaaiaadMgaaeqaaOGaai ilaiaaykW7caaMc8UaaGOmaiaac6cacaaI1aGaaGyoaiaaiMdacaaI 5aGaamyzaiaaiwdacaaMc8Uaaiykaaaa@4DE3@

    Where the constants A1-4 are dependent on the sphericity ( φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@37B1@ ) of the particle.
    Table 1.
    φ < 0.67 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaey ipaWJaaGimaiaac6cacaaI2aGaaG4naaaa@3BA2@ 0.67 φ < 0.99999 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaac6 cacaaI2aGaaG4naiabgsMiJkabeA8aQjabgYda8iaaicdacaGGUaGa aGyoaiaaiMdacaaI5aGaaGyoaiaaiMdaaaa@4292@ φ 0.99999 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaey yzImRaaGimaiaac6cacaaI5aGaaGyoaiaaiMdacaaI5aGaaGyoaaaa @3EB2@
    A 1 = e 2.3288 6.4581 φ + 2.4486 φ 2 A 2 = 0.0964 + 0.5565 φ A 3 = e 4.905 13.8944 φ + 18.4222 φ 2 10.2599 φ 3 A 4 = e 1.4681 + 12.2584 φ 20.7322 φ 2 + 15.8855 φ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaadwgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbiaaikdacaGGUa GaaG4maiaaikdacaaI4aGaaGioaiabgkHiTiaaiAdacaGGUaGaaGin aiaaiwdacaaI4aGaaGymaiabeA8aQjabgUcaRiaaikdacaGGUaGaaG inaiaaisdacaaI4aGaaGOnaiabeA8aQ9aadaqhaaadbaaabaWdbiaa ikdaaaaaliaawIcacaGLPaaaaaaak8aabaWdbiaadgeapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGimaiaac6cacaaIWaGa aGyoaiaaiAdacaaI0aGaey4kaSIaaGimaiaac6cacaaI1aGaaGynai aaiAdacaaI1aGaeqOXdOgabaGaamyqa8aadaWgaaWcbaWdbiaaioda a8aabeaak8qacqGH9aqpcaWGLbWdamaaCaaaleqabaWdbmaabmaapa qaa8qacaaI0aGaaiOlaiaaiMdacaaIWaGaaGynaiabgkHiTiaaigda caaIZaGaaiOlaiaaiIdacaaI5aGaaGinaiaaisdacqaHgpGAcqGHRa WkcaaIXaGaaGioaiaac6cacaaI0aGaaGOmaiaaikdacaaIYaGaeqOX dO2aaWbaaWqabeaacaaIYaaaaSGaeyOeI0IaaGymaiaaicdacaGGUa GaaGOmaiaaiwdacaaI5aGaaGyoaiabeA8aQnaaCaaameqabaGaaG4m aaaaaSGaayjkaiaawMcaaaaaaOWdaeaapeGaamyqa8aadaWgaaWcba Wdbiaaisdaa8aabeaak8qacqGH9aqpcaWGLbWdamaaCaaaleqabaWd bmaabmaapaqaa8qacaaIXaGaaiOlaiaaisdacaaI2aGaaGioaiaaig dacqGHRaWkcaaIXaGaaGOmaiaac6cacaaIYaGaaGynaiaaiIdacaaI 0aGaeqOXdOMaeyOeI0IaaGOmaiaaicdacaGGUaGaaG4naiaaiodaca aIYaGaaGOmaiabeA8aQnaaCaaameqabaGaaGOmaaaaliabgUcaRiaa igdacaaI1aGaaiOlaiaaiIdacaaI4aGaaGynaiaaiwdacqaHgpGAda ahaaadbeqaaiaaiodaaaaaliaawIcacaGLPaaaaaaaaaa@A4A7@ A 1 = 8.1761 e 4.0655 φ A 2 = 0.0964 + 0.5565 φ A 3 = 73.69 e 5.0748 φ A 4 = 5.378 e 6.2122 φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaaiIdacaGGUaGaaGymaiaaiEdacaaI2aGaaGymaiaadwgapaWaaW baaSqabeaapeWaaeWaa8aabaWdbiabgkHiTiaaisdacaGGUaGaaGim aiaaiAdacaaI1aGaaGynaiabeA8aQbGaayjkaiaawMcaaaaaaOWdae aapeGaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqp caaIWaGaaiOlaiaaicdacaaI5aGaaGOnaiaaisdacqGHRaWkcaaIWa GaaiOlaiaaiwdacaaI1aGaaGOnaiaaiwdacqaHgpGAaeaacaWGbbWd amaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaiEdacaaIZa GaaiOlaiaaiAdacaaI5aGaamyza8aadaahaaWcbeqaa8qadaqadaWd aeaapeGaeyOeI0IaaGynaiaac6cacaaIWaGaaG4naiaaisdacaaI4a GaeqOXdOgacaGLOaGaayzkaaaaaaGcpaqaa8qacaWGbbWdamaaBaaa leaapeGaaGinaaWdaeqaaOWdbiabg2da9iaaiwdacaGGUaGaaG4mai aaiEdacaaI4aGaamyza8aadaahaaWcbeqaa8qadaqadaWdaeaapeGa aGOnaiaac6cacaaIYaGaaGymaiaaikdacaaIYaGaeqOXdOgacaGLOa Gaayzkaaaaaaaaaa@7674@ A 1 = 0.1806 A 2 = 0.6459 A 3 = 0.4251 A 4 = 6880.95 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaaicdacaGGUaGaaGymaiaaiIdacaaIWaGaaGOnaaWdaeaapeGaam yqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaaIWaGa aiOlaiaaiAdacaaI0aGaaGynaiaaiMdaaeaacaWGbbWdamaaBaaale aapeGaaG4maaWdaeqaaOWdbiabg2da9iaaicdacaGGUaGaaGinaiaa ikdacaaI1aGaaGymaaWdaeaapeGaamyqa8aadaWgaaWcbaWdbiaais daa8aabeaak8qacqGH9aqpcaaI2aGaaGioaiaaiIdacaaIWaGaaiOl aiaaiMdacaaI1aaaaaa@54A3@
  2. Non-spherical (Ganser and Holzer-Sommerfeld)

    The Ganser and Holzer-Sommerfeld models consider both the shape and orientation of the particle. Since the orientation of the particles is also considered, this model is applicable to particle shapes such as disk, ellipsoid and elongated cylinder. The user inputs for these models are volume and aspect ratio of the particles.

    The Ganser correlation is given by:

    C d n s =   24 k 1 Re i 1 + 0.1118 k 1 k 2 Re i 0.6567 + 0.4305 k 2 1 + 3305 k 1 k 2 Re i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaakmaaCaaaleqabaWd biaad6gacaWGZbaaaOGaeyypa0JaaiiOamaalaaapaqaa8qacaaIYa GaaGinaaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaqGsbGaaeyza8aadaqhaaWcbaWdbiaadMgaa8aabaaaaaaak8 qadaWadaWdaeaapeGaaGymaiabgUcaRiaaicdacaGGUaGaaGymaiaa igdacaaIXaGaaGioamaabmaapaqaa8qacaWGRbWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiaadUgapaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaaeOuaiaabwgapaWaa0baaSqaa8qacaWGPbaapaqaaaaaaO WdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 2aGaaGynaiaaiAdacaaI3aaaaaGccaGLBbGaayzxaaGaey4kaSYaaS aaa8aabaWdbiaaicdacaGGUaGaaGinaiaaiodacaaIWaGaaGynaiaa dUgapaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeWaaeWaaeaaca aIXaGaey4kaSYaaSGaa8aabaWdbiaaiodacaaIZaGaaGimaiaaiwda a8aabaWdbiaadUgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaam 4Aa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaqGsbGaaeyza8aa daqhaaWcbaWdbiaadMgaa8aabaaaaaaaaOWdbiaawIcacaGLPaaaaa aaaa@6EAF@

    Here k 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@380E@ and k 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@380F@ are Stokes and Newton shape factors respectively.

    k 1 = 1 ϕ p r o j 3 + 2 3 φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aabaGaaGymaaqabaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaeWaaeaa daWcaaqaaiabew9aMnaaBaaabaGaamiCaiaadkhacaWGVbGaamOAaa qabaaabaGaaG4maaaacqGHRaWkdaWcaaqaaiaaikdaaeaacaaIZaWa aOaaaeaacqaHgpGAaeqaaaaaaiaawIcacaGLPaaaaaaaaa@45D7@
    k 2 = 10 1.8148 ( log 10 ( φ ) ) 0.5743 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aabaGaaGOmaaqabaGaeyypa0JaaGymaiaaicdadaahaaqabeaacaaI XaGaaiOlaiaaiIdacaaIXaGaaGinaiaaiIdacaGGOaGaeyOeI0Iaci iBaiaac+gacaGGNbWaaSbaaeaacaaIXaGaaGimaaqabaGaaiikaiab eA8aQjaacMcacaGGPaWaaWbaaeqabaGaaGimaiaac6cacaaI1aGaaG 4naiaaisdacaaIZaaaaaaaaaa@4D13@

    Where ϕ p r o j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaeaacaWGWbGaamOCaiaad+gacaWGQbaabeaaaaa@3BAC@ is the particle’s projected diameter ratio and is dependent on the aspect ratio ( A R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGsbaabeaaaaa@37BD@ ) of the particle and the angle between the principal axis and the fluid velocity vector ( α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ ).

    ϕ p r o j = 4 π A R sin 2 α + cos 2 α 3 A R 2 1 3 A R = 1 A R sin 2 α + cos 2 α A R 1 3 A R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadchacaWGYbGaam4BaiaadQgaaeqaaOGaeyypa0Zaaiqa aqaabeqaamaalaaabaWaaOaaaeaadaWcaaqaaiaaisdaaeaacqaHap aCaaGaamyqamaaBaaaleaacaWGsbaabeaakmaakaaabaWaaeWaaeaa ciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaHXoqyai aawIcacaGLPaaaaSqabaGccqGHRaWkdaGcaaqaamaabmaabaGaci4y aiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegacaGLOa GaayzkaaaaleqaaaqabaaakeaadaqadaqaamaalaaabaGaaG4maiaa dgeadaWgaaWcbaGaamOuaaqabaaakeaacaaIYaaaaaGaayjkaiaawM caamaaCaaaleqabaWaaSGaaeaacaaIXaaabaGaaG4maaaaaaaaaOGa aCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadgeadaWgaaWcbaGaamOu aaqabaGccqGH9aqpcaaIXaaabaWaaSaaaeaadaGcaaqaaiaadgeada WgaaWcbaGaamOuaaqabaGcdaGcaaqaamaabmaabaGaci4CaiaacMga caGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegacaGLOaGaayzkaa aaleqaaOGaey4kaSYaaOaaaeaadaqadaqaaiGacogacaGGVbGaai4C amaaCaaaleqabaGaaGOmaaaakiabeg7aHbGaayjkaiaawMcaaaWcbe aaaeqaaaGcbaWaaeWaaeaacaWGbbWaaSbaaSqaaiaadkfaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaadaWccaqaaiaaigdaaeaacaaIZa aaaaaaaaGccaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyqamaaBa aaleaacaWGsbaabeaakiabgcMi5kaaigdaaaGaay5Eaaaaaa@9A99@

    Since this model only takes the aspect ratio as an input, the sphericity ( φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@37B1@ ) is calculated from the aspect ratio using the following correlation:

    φ = 1.5 A R 2 3 A R + 0.5 A R = 1 A R 2 3 1 + 2 A R 1.61 3 A R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaey ypa0ZaaiqaaqaabeqaamaalaaabaWaaeWaaeaacaaIXaGaaiOlaiaa iwdacaWGbbWaaSbaaSqaaiaadkfaaeqaaaGccaGLOaGaayzkaaWaaW baaSqabeaadaWccaqaaiaaikdaaeaacaaIZaaaaaaaaOqaamaabmaa baGaamyqamaaBaaaleaacaWGsbaabeaakiabgUcaRiaaicdacaGGUa GaaGynaaGaayjkaiaawMcaamaaCaaaleqabaaaaaaakiaaxMaacaWL jaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGbbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0JaaG ymaaqaamaalaaabaWaaeWaaeaacaWGbbWaaSbaaSqaaiaadkfaaeqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWccaqaaiaaikdaaeaaca aIZaaaaaaaaOqaamaabmaabaWaaSaaaeaadaqadaqaaiaaigdacqGH RaWkcaaIYaGaamyqamaaBaaaleaacaWGsbaabeaakmaaCaaaleqaba GaaGymaiaac6cacaaI2aGaaGymaaaaaOGaayjkaiaawMcaaaqaaiaa iodaaaaacaGLOaGaayzkaaWaaWbaaSqabeaaaaaaaOGaaCzcaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WGbbWaaSbaaSqaaiaadkfaaeqaaOGaeyiyIKRaaGymaaaacaGL7baa aaa@FAF1@

    The Holzer-Sommerfeld correlation is given by:

    C d n s =   8 Re i 1 φ + 16 Re i 1 φ + 3 Re i 1 φ 3 4 +   0.42 0.4 log 10 φ 0.2 1 φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaakmaaCaaaleqabaWd biaad6gacaWGZbaaaOGaeyypa0JaaiiOamaalaaapaqaa8qacaaI4a aapaqaa8qacaqGsbGaaeyza8aadaqhaaWcbaWdbiaadMgaa8aabaaa aaaak8qadaWcaaWdaeaapeGaaGymaaWdaeaapeWaaOaaa8aabaWdbi abeA8aQnaaBaaaleaaaeqaaOWdamaaCaaaleqabaWdbiabgwQiEbaa aeqaaaaakiabgUcaRmaalaaapaqaa8qacaaIXaGaaGOnaaWdaeaape GaaeOuaiaabwgapaWaa0baaSqaa8qacaWGPbaapaqaaaaaaaGcpeWa aSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8qacqaHgpGAda WgaaWcbaaabeaaaeqaaaaakiabgUcaRmaalaaapaqaa8qacaaIZaaa paqaa8qadaGcaaWdaeaapeGaaeOuaiaabwgapaWaa0baaSqaa8qaca WGPbaapaqaaaaaa8qabeaaaaGcdaWcaaWdaeaapeGaaGymaaWdaeaa peGaeqOXdO2damaaDaaaleaaaeaapeWaaSGaa8aabaWdbiaaiodaa8 aabaWdbiaaisdaaaaaaaaakiabgUcaRiaacckacaaIWaGaaiOlaiaa isdacaaIYaWaaWbaaSqabeaacaaIWaGaaiOlaiaaisdadaqadaWdae aapeGaeyOeI0IaciiBaiaac+gacaGGNbWdamaaBaaameaapeGaaGym aiaaicdaa8aabeaal8qacqaHgpGApaWaaSbaaWqaaaqabaaal8qaca GLOaGaayzkaaWdamaaCaaameqabaWdbiaaicdacaGGUaGaaGOmaaaa aaGcdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqOXdO2aaSbaaSqaaa qabaGcpaWaaWbaaSqabeaapeGaeyyPI4faaaaaaaa@7114@

    Where sphericity is calculated from the aspect ratio using the correlation:

    φ = 1.5 A R 2 3 A R + 0.5 A R = 1 A R 2 3 1 + 2 A R 1.61 3 A R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaey ypa0ZaaiqaaqaabeqaamaalaaabaWaaeWaaeaacaaIXaGaaiOlaiaa iwdacaWGbbWaaSbaaSqaaiaadkfaaeqaaaGccaGLOaGaayzkaaWaaW baaSqabeaadaWccaqaaiaaikdaaeaacaaIZaaaaaaaaOqaamaabmaa baGaamyqamaaBaaaleaacaWGsbaabeaakiabgUcaRiaaicdacaGGUa GaaGynaaGaayjkaiaawMcaamaaCaaaleqabaaaaaaakiaaxMaacaWL jaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGbbWaaSbaaSqaaiaadkfaaeqaaOGaeyyp a0JaaGymaaqaamaalaaabaWaaeWaaeaacaWGbbWaaSbaaSqaaiaadk faaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWccaqaaiaaikda aeaacaaIZaaaaaaaaOqaamaabmaabaWaaSaaaeaadaqadaqaaiaaig dacqGHRaWkcaaIYaGaamyqamaaBaaaleaacaWGsbaabeaakmaaCaaa leqabaGaaGymaiaac6cacaaI2aGaaGymaaaaaOGaayjkaiaawMcaaa qaaiaaiodaaaaacaGLOaGaayzkaaWaaWbaaSqabeaaaaaaaOGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaamyqamaaBaaaleaacaWGsbaabeaakiabgcMi 5kaaigdaaaGaay5Eaaaaaa@1842@

    φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaCaaaleqabaWdbiabgwQiEbaaaaa@39C3@ is the crosswise sphericity and is calculated as shown below:

    φ = π 3 A R 2 2 3 4 A R sin 2 α +π cos 2 α A R =1 A R 2 3 A R sin 2 α + cos 2 α A R 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHgpGAdaWgaaWcbaaabeaak8aadaahaaWcbeqaa8qacqGHLkIx aaGcpaGaeyypa0ZaaiqaaqaabeqaamaalaaabaGaeqiWda3aaeWaae aadaWcaaqaaiaaiodacaWGbbWaaSbaaSqaaiaadkfaaeqaaaGcbaGa aGOmaaaaaiaawIcacaGLPaaadaahaaWcbeqaamaaliaabaGaaGOmaa qaaiaaiodaaaaaaaGcbaWaaeWaaeaacaaI0aGaamyqamaaBaaaleaa caWGsbaabeaakmaakaaabaWaaeWaaeaaciGGZbGaaiyAaiaac6gada ahaaWcbeqaaiaaikdaaaGccqaHXoqyaiaawIcacaGLPaaaaSqabaGc cqGHRaWkcqaHapaCdaGcaaqaamaabmaabaGaci4yaiaac+gacaGGZb WaaWbaaSqabeaacaaIYaaaaOGaeqySdegacaGLOaGaayzkaaaaleqa aaGccaGLOaGaayzkaaWaaWbaaSqabeaaaaaaaOGaaCzcaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGbbWaaS baaSqaaiaadkfaaeqaaOGaeyypa0JaaGymaaqaamaalaaabaGaamyq amaaBaaaleaacaWGsbaabeaakmaaCaaaleqabaWaaSGaaeaacaaIYa aabaGaaG4maaaaaaaakeaadaqadaqaaiaadgeadaWgaaWcbaGaamOu aaqabaGcdaGcaaqaamaabmaabaGaci4CaiaacMgacaGGUbWaaWbaaS qabeaacaaIYaaaaOGaeqySdegacaGLOaGaayzkaaaaleqaaOGaey4k aSYaaOaaaeaadaqadaqaaiGacogacaGGVbGaai4CamaaCaaaleqaba GaaGOmaaaakiabeg7aHbGaayjkaiaawMcaaaWcbeaaaOGaayjkaiaa wMcaamaaCaaaleqabaaaaaaakiaaxMaacaWLjaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadgeadaWgaaWcba GaamOuaaqabaGccqGHGjsUcaaIXaaaaiaawUhaaaaa@AB46@

Lift Models

Generally, the lift force acts in a direction normal to the relative motion of the fluid and particle. The two components of the lift force considered are Saffman force and Magnus force. The Saffman lift force is due to the pressure gradient on a non-rotating particle in the presence of a non-uniform shear velocity field while the Magnus lift force is due to the particle rotation in a uniform flow. Unlike spherical particles, the behavior of non-spherical particles in turbulent flows is much more complicated and the lift force acting on them can no longer be neglected. As the particle’s principal axis becomes inclined with the flow direction, the effect of lift force on the particle motion becomes significant.

The lift force on a particle is given by:

f i L = β ls L ( v slip × ω f )+ β lm L ( ω slip × v slip )+ β ln L ( e ^ Ln ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWGPbaabaGaamitaaaakiabg2da9iabek7aInaaDaaaleaa caWGSbGaam4CaaqaaiaadYeaaaGccaGGOaGaamODamaaBaaaleaaca WGZbGaamiBaiaadMgacaWGWbaabeaakiabgEna0kabeM8a3naaBaaa leaacaWGMbaabeaakiaacMcacqGHRaWkcqaHYoGydaqhaaWcbaGaam iBaiaad2gaaeaacaWGmbaaaOGaaiikaiabeM8a3naaBaaaleaacaWG ZbGaamiBaiaadMgacaWGWbaabeaakiabgEna0kaadAhadaWgaaWcba Gaam4CaiaadYgacaWGPbGaamiCaaqabaGccaGGPaGaey4kaSIaeqOS di2aa0baaSqaaiGacYgacaGGUbaabaGaamitaaaakiaacIcaqaaaaa aaaaWdbiqadwgapaGbaKaadaWgaaWcbaWdbiaadYeapaGaamOBaaqa baGccaGGPaaaaa@677B@

Where,
  • β l s L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiaadYgacaWGZbaabaGaamitaaaaaaa@3A7B@ is the Saffman lift coefficient.
  • β l m L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiaadYgacaWGTbaabaGaamitaaaaaaa@3A75@ is the Magnus lift coefficient.
  • β ln L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiGacYgacaGGUbaabaGaamitaaaaaaa@3A76@ is the non-spherical lift coefficient (used for non-spherical models only).
  • ω f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadAgaaeqaaaaa@38D7@ is the curl of local fluid velocity ( × v f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaey 41aq7aa8HaaeaacaWG2bWaaSbaaSqaaiaadAgaaeqaaaGccaGLxdca aaa@3D61@ ).
  • ω s l i p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadohacaWGSbGaamyAaiaadchaaeqaaaaa@3BB8@ is the curl of slip velocity ( ω slip = 1 2 ω f ω p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadiab=L8a3n aaBaaaleaacaWGZbGaamiBaiaadMgacaWGWbaabeaakabaaaaaaaaa peGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaWdai ab=L8a3naaBaaaleaacaWGMbaabeaak8qacqGHsislpaGae8xYdC3a aSbaaSqaaiaadchaaeqaaaaa@4598@ ).
  • ω p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadchaaeqaaaaa@38E1@ is the curl of particle velocity ( × v p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaey 41aq7aa8HaaeaacaWG2bWaaSbaaSqaaiaadchaaeqaaaGccaGLxdca aaa@3D6B@ ).
There are three lift models available in AcuSolve:
  1. Saffman-Magnus

    This model is for spherical particles and hence the orientation is neglected whereas the last two models take the particle orientation into account while calculating the lift forces.

    The correlation for the Saffman force is given by:

    β l s L = S L C × C l s d p 2 μ f ρ f ω f 0.5 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaWGSbGaam4CaaqaaiaadYeaaaGcqaaaaaaaaaWdbiabg2da 9iaadofacaWGmbGaam4qaiabgEna0kaadoeapaWaaSbaaSqaa8qaca WGSbGaam4CaaWdaeqaaOWdbiaadsgapaWaa0baaSqaaiaadchaaeaa peGaaGOmaaaakmaakaaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qaca WGMbaapaqabaGcpeGaeqyWdi3damaaBaaaleaapeGaamOzaaWdaeqa aaWdbeqaaOWaaqWaa8aabaWdbiabeM8a3naaBaaaleaacaWGMbaabe aaaOGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqGHsislcaaIWaGa aiOlaiaaiwdaaaaaaa@5634@

    SLC is Saffman constant with a default value of 1.615. This value can be modified by you while specifying the model inputs. C l s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGZbaapaqabaaaaa@3914@ is given by the expression:

    C l s = e 0.1 Re i + 0.3314   γ i 1 e 0.1 Re i         Re i 40 0.0524 γ i Re i                                 Re i > 40 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGZbaapaqabaGcpeGaeyyp a0Zaaiqaa8aabaqbaeqabiqaaaqaa8qacaWGLbWdamaaCaaaleqaba WdbiabgkHiTiaaicdacaGGUaGaaGymaiaabkfacaqGLbWdamaaBaaa meaapeGaamyAaaWdaeqaaaaak8qacqGHRaWkcaaIWaGaaiOlaiaaio dacaaIZaGaaGymaiaaisdacaGGGcWaaOaaa8aabaWdbiabeo7aN9aa daWgaaWcbaWdbiaadMgaa8aabeaaa8qabeaakmaabmaapaqaa8qaca aIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacqGHsislcaaIWaGa aiOlaiaaigdacaqGsbGaaeyza8aadaWgaaadbaWdbiaadMgaa8aabe aaaaaak8qacaGLOaGaayzkaaGaaiiOaiaacckacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaacckacaGGGcGaaeOuaiaabwgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyizImQaaGinaiaaicdaa8aabaWdbiaaicda caGGUaGaaGimaiaaiwdacaaIYaGaaGinamaakaaapaqaa8qacqaHZo WzpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaeOuaiaabwgapaWa aSbaaSqaa8qacaWGPbaapaqabaaapeqabaGccaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caqGsbGaaeyza8aadaWgaaWcbaWdbiaadMga a8aabeaak8qacqGH+aGpcaaI0aGaaGimaaaaaiaawUhaaaaa@DE49@
    γ i = ω f d p 2 v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qadaabdaWdaeaaiiWacqWFjpWDdaWgaaWcbaGaamOzaa qabaaak8qacaGLhWUaayjcSdGaamiza8aadaWgaaWcbaGaamiCaaqa baaakeaapeGaaGOmamaaemaapaqaa8qacaWH2bWaaSbaaSqaaiaado hacaWGSbGaamyAaiaadchaaeqaaaGccaGLhWUaayjcSdaaaaaa@4BAF@

    The correlation for the Magnus force is given by:

    β l m L = M L C × C l m v s l i p 2 π d p 2 ρ f ω s l i p v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaWGSbGaamyBaaqaaiaadYeaaaGcqaaaaaaaaaWdbiabg2da 9maalaaapaqaa8qacaWGnbGaamitaiaadoeacqGHxdaTcaWGdbWdam aaBaaaleaapeGaamiBaiaad2gaa8aabeaakmaaemaabaWdbiaahAha daWgaaWcbaGaam4CaiaadYgacaWGPbGaamiCaaqabaaak8aacaGLhW UaayjcSdWaaWbaaSqabeaacaaIYaaaaOWdbiabec8aWjaadsgapaWa a0baaSqaaiaadchaaeaapeGaaGOmaaaakiabeg8aY9aadaWgaaWcba WdbiaadAgaa8aabeaaaOqaa8qadaabdaWdaeaaiiWapeGae8xYdC3a aSbaaSqaaiaadohacaWGSbGaamyAaiaadchaaeqaaaGccaGLhWUaay jcSdWaaqWaa8aabaacbeWdbiaa+zhadaWgaaWcbaGaam4CaiaadYga caWGPbGaamiCaaqabaaakiaawEa7caGLiWoaaaaaaa@65C6@
    ω s l i p = 1 2 ω f ω p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadiab=L8a3n aaBaaaleaacaWGZbGaamiBaiaadMgacaWGWbaabeaakabaaaaaaaaa peGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaWdai ab=L8a3naaBaaaleaacaWGMbaabeaak8qacqGHsislpaGae8xYdC3a aSbaaSqaaiaadchaaeqaaaaa@4597@

    MLC is Magnus constant with a default value of 0.125. This value can be modified by you while specifying the model inputs. C l m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGTbaapaqabaaaaa@390E@ is given by the expression:


    For the Saffman Magnus model, β ln L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaaciGGSbGaaiOBaaqaaiaadYeaaaaaaa@3A6C@ is always equal to zero.

  2. Saffman-Magnus non-spherical lift

    The non-spherical version of the Saffman-Magnus lift model is similar to the spherical lift model except the non-spherical lift coefficient ( β ln L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaaciGGSbGaaiOBaaqaaiaadYeaaaaaaa@3A6C@ ) is not equal to zero and is calculated as shown in the next section.

  3. Non-spherical lift

    When the non-spherical lift model is selected, the Saffman and Magnus lift coefficients are set to 0 and the non-spherical lift coefficient is assumed to be proportional to the drag coefficient and the correlation is given by:

    β ln L =   0.125 C D ( sin 2 α cos α ) π d p 2 v s l i p 2 x v s l i p x × v s l i p × v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aa0baaSqaaiGacYgacaGGUbaabaGaamitaaaakiabg2da 9iaacckapaWaaSaaaeaapeGaaGimaiaac6cacaaIXaGaaGOmaiaaiw dacaWGdbWaaSbaaSqaaiaadseaaeqaaOGaaiikaiGacohacaGGPbGa aiOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySdeMaeyyXICTaci 4yaiaac+gacaGGZbGaeqySdeMaaiykaiabec8aWjaadsgapaWaa0ba aSqaa8qacaWGWbaapaqaa8qacaaIYaaaaOWaaqWaa8aabaGaaCODam aaBaaaleaacaWGZbGaamiBaiaadMgacaWGWbaabeaaaOWdbiaawEa7 caGLiWoapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeWaaqWaa8 aabaWdbiqadIhagaqbaiabgwSix=aacaWH2bWaaSbaaSqaaiaadoha caWGSbGaamyAaiaadchaaeqaaaGcpeGaay5bSlaawIa7amaaemaaba WaaeWaa8aabaWdbiqadIhagaqbaiabgEna0+aacaWH2bWaaSbaaSqa aiaadohacaWGSbGaamyAaiaadchaaeqaaaGcpeGaayjkaiaawMcaai abgEna0+aacaWH2bWaaSbaaSqaaiaadohacaWGSbGaamyAaiaadcha aeqaaaGcpeGaay5bSlaawIa7aaaaaaa@7E29@

    Here the drag coefficient is obtained from the drag force calculation and α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ is the angle between the particle’s principal axis and the slip velocity vector. The direction of the lift force is given by:

    e ^ L o =   x i v s l i p x × v s l i p × v s l i p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyza8aagaqcamaaBaaaleaapeGaamita8aadaWgaaadbaWdbiaa d+gaa8aabeaaaSqabaGcpeGaeyypa0JaaiiOamaabmaabaGabmiEay aafaWaaSbaaSqaaiaadMgaaeqaaOGaeyyXICTaaCODamaaBaaaleaa caWGZbGaamiBaiaadMgacaWGWbaabeaaaOGaayjkaiaawMcaamaabm aabaWaaeWaaeaaceWG4bGbauaacqGHxdaTcaWH2bWaaSbaaSqaaiaa dohacaWGSbGaamyAaiaadchaaeqaaaGccaGLOaGaayzkaaGaey41aq RaaCODamaaBaaaleaacaWGZbGaamiBaiaadMgacaWGWbaabeaaaOGa ayjkaiaawMcaaaaa@5908@

    where, x i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEayaafaWaaSbaaSqaaiaadMgaaeqaaaaa@382B@ is the particle principal axis and v slip MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCODamaaBaaaleaacaWGZbGaamiBaiaadMgacaWGWbaabeaaaaa@3AFF@ is the slip velocity vector.

Torque Models

By using the torque models, the rotational drag force on the rotating particles due to the inertia of fluid can be considered. When AcuSolve sends the force information to EDEM, this torque is added to the rotational motion equation in EDEM. The torque on a particle is given by,

T i = β r o t T ( 0.5 ω f ω p ) + β p i t c h T x i × f i d + f i l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaakiabg2da9iabek7aInaaDaaaleaacaWGYbGa am4BaiaadshaaeaacaWGubaaaOGaaiikaiaaicdacaGGUaGaaGynai abeM8a3naaBaaaleaacaWGMbaabeaakiabgkHiTiabeM8a3naaBaaa leaacaWGWbaabeaakiaacMcacqGHRaWkcqaHYoGydaqhaaWcbaGaam iCaiaadMgacaWG0bGaam4yaiaadIgaaeaacaWGubaaaOWaaeWaaeaa ceWG4bGbauaadaWgaaWcbaGaamyAaaqabaGccqGHxdaTdaqadaqaai aadAgadaqhaaWcbaGaamyAaaqaaiaadsgaaaGccqGHRaWkcaWGMbWa a0baaSqaaiaadMgaaeaacaWGSbaaaaGccaGLOaGaayzkaaaacaGLOa Gaayzkaaaaaa@5F58@

The three types of torque models available in AcuSolve are pitching torque, rotational torque and a combination of both.
  1. Pitching torque

    When the center of pressure of the force acting on a non-spherical particle does not coincide with the center of mass, it results in a hydrodynamic pitching torque, also known as offset torque, that acts around the axis perpendicular to the plane of relative fluid velocity and particle orientation vector. The pitching torque can change the angle of incidence of the particle.

    The expression used for calculating the pitching torque coefficient is given by:

    β p i t c h T = 0.25 δ A R 1 ( sin α ) 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiaadchacaWGPbGaamiDaiaadogacaWGObaabaGaamivaaaa kiabg2da9iaaicdacaGGUaGaaGOmaiaaiwdacqaH0oazdaWgaaWcba GaamyqaiaadkfaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0IaaiikaiGa cohacaGGPbGaaiOBaiabeg7aHjaacMcadaahaaWcbeqaaiaaiodaaa aakiaawIcacaGLPaaaaaa@4EAF@
    δ AR = 0.5 d p AR 2 3 AR>1 0.5 d p AR 1 3 AR1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadgeacaWGsbaabeaakiabg2da9maaceaaeaqabeaacaaI WaGaaiOlaiaaiwdacaWGKbWaaSbaaSqaaiaadchaaeqaaOWaaeWaae aacaWGbbGaamOuaaGaayjkaiaawMcaamaaCaaaleqabaWaaSGaaeaa caaIYaaabaGaaG4maaaacaWLjaaaaOGaaCzcaiaaywW7caWGbbGaam Ouaiabg6da+iaaigdaaeaacaaIWaGaaiOlaiaaiwdacaWGKbWaaSba aSqaaiaadchaaeqaaOWaaeWaaeaacaWGbbGaamOuaaGaayjkaiaawM caamaaCaaaleqabaWaaSGaaeaacqGHsislcaaIXaaabaGaaG4maaaa aaGccaWLjaGaaCzcaiaaywW7caWGbbGaamOuaiabgsMiJkaaigdaaa Gaay5Eaaaaaa@5BDD@

    Where, A R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGsb aaaa@3786@ is the aspect ratio of the particle and α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@37A8@ is the angle between the particle’s principal axis and the slip velocity vector. When the pitching torque model is selected, the rolling torque coefficient is set to 0 and vice versa.

  2. Rotational torque

    A particle experiences rotational torque, also known as rolling friction torque, when there is a difference between the local fluid rotation and the angular velocity of the particle. The rotational torque is applied at the center of mass of the particle and the rotational torque coefficient is given by the expression:

    β r o t T = ρ f 2 d p 2 5 c r 0.5 ω f - ω p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aa0baaSqaaiaadkhacaWGVbGaamiDaaqaaiaadsfaaaGc cqGH9aqpdaWcaaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaamOzaa WdaeqaaaGcbaWdbiaaikdaaaWaaeWaa8aabaWdbmaalaaapaqaa8qa caWGKbWdamaaBaaaleaapeGaamiCaaWdaeqaaaGcbaWdbiaaikdaaa aacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdaaaGccaWGJbWd amaaBaaaleaapeGaamOCaaWdaeqaaOWdbmaaemaapaqaa8qacaaIWa GaaiOlaiaaiwdacqaHjpWDdaWgaaWcbaGaamOzaaqabaGccaGGTaGa eqyYdC3aaSbaaSqaaiaadchaaeqaaaGccaGLhWUaayjcSdaaaa@54FD@
    c r = 0 Re r = 0 64 π Re r Re r 32 12.9 Re r 0.5 + 128.4 Re r 32 < Re r < 1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGYbaabeaakiabg2da9maaceaaeaqabeaacaaIWaGaaGzb VlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaciOuaiaacwgadaWgaaWcbaGaamOCaaqabaGccqGH9aqpcaaIWaaa baWaaSaaaeaacaaI2aGaaGinaiabec8aWbqaaiGackfacaGGLbWaaS baaSqaaiaadkhaaeqaaaaakiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlaaywW7caaMf8UaciOuaiaacwgadaWgaaWcbaGaamOCaa qabaGccqGHKjYOcaaIZaGaaGOmaaqaamaalaaabaGaaGymaiaaikda caGGUaGaaGyoaaqaaiGackfacaGGLbWaa0baaSqaaiaadkhaaeaaca aIWaGaaiOlaiaaiwdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaGaaGOm aiaaiIdacaGGUaGaaGinaaqaaiGackfacaGGLbWaaSbaaSqaaiaadk haaeqaaaaakiaaywW7caaMf8UaaGzbVlaaywW7caaIZaGaaGOmaiab gYda8iGackfacaGGLbWaaSbaaSqaaiaadkhaaeqaaOGaeyipaWJaaG ymaiaaicdacaaIWaGaaGimaaaacaGL7baaaaa@858B@

    Where, Re r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabwgapaWaaSbaaSqaa8qacaWGYbaapaqabaaaaa@3917@ is the Rotational Reynolds number of the particle and is given by,

    Re r = ε f ρ f d p 2 0.5 ω f ω p μ f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabwgapaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiabew7aLnaaBaaaleaacaWGMbaabeaakiabeg 8aY9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacaWGKbWdamaaDaaa leaapeGaamiCaaWdaeaapeGaaGOmaaaakmaaemaapaqaa8qacaaIWa GaaiOlaiaaiwdaiiWacqWFjpWDdaWgaaWcbaGaamOzaaqabaGccqGH sislcqWFjpWDdaWgaaWcbaGaamiCaaqabaaakiaawEa7caGLiWoaa8 aabaWdbiabeY7aTnaaBaaaleaacaWGMbaabeaaaaaaaa@528A@

  3. Pitching rotational torque

    When the pitching rotational torque model is selected, both pitching torque and rotational torque are applied on the particle.

Heat Transfer Governing Equations

When heat transfer is active, in addition to the momentum equation, the energy conservation equations for the fluid and the particle are solved simultaneously to obtain the temperature of each phase. The governing equations for obtaining the temperatures of the particles and fluid are described below:

t ρ f ε f C pf T f +. v f ρ f ε f C pf T f = . ε f k f T f + Q p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaqa daWdaeaapeGaeqyWdi3aaSbaaSqaaiaadAgaaeqaaOGaeqyTdu2dam aaBaaaleaapeGaamOzaaWdaeqaaOWdbiaadoeapaWaaSbaaSqaa8qa caWGWbGaamOzaaWdaeqaaOWdbiaadsfapaWaaSbaaSqaa8qacaWGMb aapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaey4bIeTaaiOlamaa bmaapaqaaGqabiaa=zhadaWgaaWcbaGaamOzaaqabaGcpeGaeqyWdi 3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabew7aL9aadaWgaaWc baWdbiaadAgaa8aabeaak8qacaWGdbWdamaaBaaaleaapeGaamiCai aadAgaa8aabeaak8qacaWGubWdamaaBaaaleaapeGaamOzaaWdaeqa aaGcpeGaayjkaiaawMcaaiabg2da9iaabckacqGHhis0caGGUaWaae Waa8aabaWdbiabew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qa caWGRbWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabgEGirlaads fapaWaaSbaaSqaa8qacaWGMbaapaqabaaak8qacaGLOaGaayzkaaGa ey4kaSIaamyua8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@6B7F@

Where Q p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@382E@ represents the heat source term resulting from the heat transfer from the particle.

Q p = i=0 N p h fp A p T f T p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqGH9aqpdaGf WbqabSWdaeaapeGaamyAaiabg2da9iaaicdaa8aabaWdbiaad6eapa WaaSbaaWqaa8qacaWGWbaapaqabaaaneaapeGaeyyeIuoaaOGaamiA a8aadaWgaaWcbaWdbiaadAgacaWGWbaapaqabaGcpeGaamyqa8aada WgaaWcbaWdbiaadchaa8aabeaak8qadaqadaWdaeaapeGaamiva8aa daWgaaWcbaGaamOzaaqabaGcpeGaeyOeI0Iaamiva8aadaWgaaWcba GaamiCaaqabaaak8qacaGLOaGaayzkaaaaaa@4D02@

A p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@381E@ is the surface area of the particle, T p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3831@ is the particle temperature and T f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@3827@ is the fluid temperature. The heat transfer coefficient ( h f p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaadAgacaWGWbaapaqabaaaaa@3930@ ) is calculated using the empirical correlation given by Nu p = h f p d p k f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOtaiaabwhapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiaadIgapaWaaSbaaSqaa8qacaWGMbGaamiCaa WdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbaapaqabaaakeaa peGaam4Aa8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaaaaa@4238@ where the Nusselt number is calculated using the following expression:

Nu p = 2 + 0.6 ε f 3.5 Re i 0.5 Pr 0.333333 Re i < 200 2 + 0.5 ε f 3.5 Re i 0.5 Pr 0.333333 + 0.02 ε f 3.5 Re i 0.8 Pr 0.333333 200 Re i < 1500 2 + 0.000045 ε f 3.5 Re i 1.8 Re 1500 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOtaiaabwhapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyyp a0ZaaiqaaqaabeqaaiaaikdacqGHRaWkcaaIWaGaaiOlaiaaiAdacq aH1oqzdaqhaaWcbaGaamOzaaqaaiaaiodacaGGUaGaaGynaaaakiGa ckfacaGGLbWaa0baaSqaaiaadMgaaeaacaaIWaGaaiOlaiaaiwdaaa GcciGGqbGaaiOCamaaCaaaleqabaGaaGimaiaac6cacaaIZaGaaG4m aiaaiodacaaIZaGaaG4maiaaiodaaaGccaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaci OuaiaacwgadaWgaaWcbaGaamyAaaqabaGccqGH8aapcaaIYaGaaGim aiaaicdaaeaacaaIYaGaey4kaSIaaGimaiaac6cacaaI1aGaeqyTdu 2aa0baaSqaaiaadAgaaeaacaaIZaGaaiOlaiaaiwdaaaGcciGGsbGa aiyzamaaDaaaleaacaWGPbaabaGaaGimaiaac6cacaaI1aaaaOGaci iuaiaackhadaahaaWcbeqaaiaaicdacaGGUaGaaG4maiaaiodacaaI ZaGaaG4maiaaiodacaaIZaaaaOGaey4kaSIaaGimaiaac6cacaaIWa GaaGOmaiabew7aLnaaDaaaleaacaWGMbaabaGaaG4maiaac6cacaaI 1aaaaOGaciOuaiaacwgadaqhaaWcbaGaamyAaaqaaiaaicdacaGGUa GaaGioaaaakiGaccfacaGGYbWaaWbaaSqabeaacaaIWaGaaiOlaiaa iodacaaIZaGaaG4maiaaiodacaaIZaGaaG4maaaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG OmaiaaicdacaaIWaGaeyizImQaciOuaiaacwgadaWgaaWcbaGaamyA aaqabaGccqGH8aapcaaIXaGaaGynaiaaicdacaaIWaaabaGaaGOmai abgUcaRiaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaGimaiaaisda caaI1aGaeqyTdu2aa0baaSqaaiaadAgaaeaacaaIZaGaaiOlaiaaiw daaaGcciGGsbGaaiyzamaaDaaaleaacaWGPbaabaGaaGymaiaac6ca caaI4aaaaOGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaciOuaiaacw gacqGHLjYScaaIXaGaaGynaiaaicdacaaIWaGaaCzcaaaacaGL7baa aaa@29BE@

Where Pr MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiuaiaabkhaaaa@37D1@ is the Prandtl number given by Pr = μ f C p f k f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiuaiaabkhacqGH9aqpdaWcaaWdaeaapeGaeqiVd02damaaBaaa leaapeGaamOzaaWdaeqaaOWdbiaadoeapaWaaSbaaSqaa8qacaWGWb GaamOzaaWdaeqaaaGcbaWdbiaadUgapaWaaSbaaSqaa8qacaWGMbaa paqabaaaaaaa@416C@ .

The rate of change of the particle’s temperature over time is given by,

m p c p dT dt = Q heat MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGWbaabeaakiaadogadaWgaaWcbaGaamiCaaqabaGcdaWc aaqaaiaadsgacaWGubaabaGaamizaiaadshaaaGaeyypa0ZaaabCae aacaWGrbWaaSbaaSqaaiaadIgacaWGLbGaamyyaiaadshaaeqaaaqa aaqaaaqdcqGHris5aaaa@45CD@

Where Q h e a t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGObGaamyzaiaadggacaWG0baabeaaaaa@3AAC@ is the sum of conductive and convective heat fluxes. The convective heat flux is calculated by AcuSolve based on the correlation described above and shared through the coupling interface once per each AcuSolve time step. The conductive heat transfer is due to particle-particle and particle-geometry contacts and is calculated based on the relative temperatures and the particle overlap. The conductive heat flux between two particles p 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaaig daaaa@37A4@ and p 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaaik daaaa@37A5@ is given by,

Q p1p2 = 4 k p1 k p2 k p1 + k p2 3 F N r * 4 E * 1/3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGWbGaaGymaiaadchacaaIYaaabeaakiabg2da9maalaaa baGaaGinaiaadUgadaWgaaWcbaGaamiCaiaaigdaaeqaaOGaam4Aam aaBaaaleaacaWGWbGaaGOmaaqabaaakeaacaWGRbWaaSbaaSqaaiaa dchacaaIXaaabeaakiabgUcaRiaadUgadaWgaaWcbaGaamiCaiaaik daaeqaaaaakmaadmaabaWaaSaaaeaacaaIZaGaamOramaaBaaaleaa caWGobaabeaakiaadkhadaahaaWcbeqaaiaacQcaaaaakeaacaaI0a GaamyramaaCaaaleqabaGaaiOkaaaaaaaakiaawUfacaGLDbaadaah aaWcbeqaaiaaigdacaGGVaGaaG4maaaaaaa@53A4@

Where k MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E4@ is the thermal conductivity, F N MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGobaabeaaaaa@37BE@ is the normal force, r * MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaaiOkaaaaaaa@37C6@ is the geometric mean of the particles’ radii and E * MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaaiOkaaaaaaa@3799@ is the effective Young’s modulus for the two particles.

Mass Transfer Model

The governing equations for the mass transfer in AcuSolve-EDEM coupling are described below:

( ε f ρ f ) t +( ρ f ε f v f )= m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaacIcacqaH1oqzpaWaaSbaaSqaa8qa caWGMbaapaqabaGccqaHbpGCdaWgaaWcbaGaamOzaaqabaGccaGGPa aabaWdbiabgkGi2kaadshaaaGaey4kaSIaey4bIeTaeyyXICTaaiik a8aacqaHbpGCdaWgaaWcbaGaamOzaaqabaGcpeGaeqyTdu2damaaBa aaleaapeGaamOzaaWdaeqaaGqabOWdbiaa=zhadaWgaaWcbaGaamOz aaqabaGcpaGaaiyka8qacqGH9aqpdaWfGaqaaiaad2gaaSqabeaacq GHIaYTaaaaaa@5355@

Additionally, a species transport equation is also solved for tracking the transport of the vapor phase in the fluid domain.

t ρ f ε f ψ v + . v f ρ f ε f ψ v =   . D v ψ v + m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaqa daWdaeaapeGaeqyWdi3aaSbaaSqaaiaadAgaaeqaaOGaeqyTdu2dam aaBaaaleaapeGaamOzaaWdaeqaaOWdbiabeI8a5naaBaaaleaacaWG 2baabeaaaOGaayjkaiaawMcaaiabgUcaRiabgEGirlaac6cadaqada WdaeaaieqacaWF2bWaaSbaaSqaaiaadAgaaeqaaOWdbiabeg8aY9aa daWgaaWcbaWdbiaadAgaa8aabeaak8qacqaH1oqzpaWaaSbaaSqaa8 qacaWGMbaapaqabaGcpeGaeqiYdK3aaSbaaSqaaiaadAhaaeqaaaGc caGLOaGaayzkaaGaeyypa0JaaeiOaiabgEGirlaac6cadaqadaWdae aapeGaamiramaaBaaaleaacaWG2baabeaakiabgEGirlabeI8a5naa BaaaleaacaWG2baabeaaaOGaayjkaiaawMcaaiabgUcaRmaaxacaba GaamyBaaWcbeqaaiabgkci3caaaaa@64DC@
t ρ f ε f C pf T f +. v f ρ f ε f C pf T f = . ε f k f T f + Q p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaqa daWdaeaapeGaeqyWdi3aaSbaaSqaaiaadAgaaeqaaOGaeqyTdu2dam aaBaaaleaapeGaamOzaaWdaeqaaOWdbiaadoeapaWaaSbaaSqaa8qa caWGWbGaamOzaaWdaeqaaOWdbiaadsfapaWaaSbaaSqaa8qacaWGMb aapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaey4bIeTaaiOlamaa bmaapaqaaGqabiaa=zhadaWgaaWcbaGaamOzaaqabaGcpeGaeqyWdi 3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabew7aL9aadaWgaaWc baWdbiaadAgaa8aabeaak8qacaWGdbWdamaaBaaaleaapeGaamiCai aadAgaa8aabeaak8qacaWGubWdamaaBaaaleaapeGaamOzaaWdaeqa aaGcpeGaayjkaiaawMcaaiabg2da9iaabckacqGHhis0caGGUaWaae Waa8aabaWdbiabew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qa caWGRbWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabgEGirlaads fapaWaaSbaaSqaa8qacaWGMbaapaqabaaak8qacaGLOaGaayzkaaGa ey4kaSIaamyua8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@6B7F@

For the mass transfer simulations, the heat source term on the right-hand side consists of both the convective term and a latent heat term due to evaporation of the liquid phase, that is, moisture content of particle. This is calculated as shown below:

d T p dt = f 2 Nu 3Pr θ 1 τ p ( T f T p )+ L V C p,l m m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamivamaaBaaaleaacaWGWbaabeaaaOqaaiaadsgacaWG0baa aiabg2da9iaadAgadaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiaad6 eacaWG1baabaGaaG4maiGaccfacaGGYbaaamaabmaabaWaaSaaaeaa cqaH4oqCdaWgaaWcbaGaaGymaaqabaaakeaacqaHepaDdaWgaaWcba GaamiCaaqabaaaaaGccaGLOaGaayzkaaGaaiikaiaadsfadaWgaaWc baGaamOzaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaadchaaeqaaO GaaiykaiabgUcaRmaabmaabaWaaSaaaeaacaWGmbWaaSbaaSqaaiaa dAfaaeqaaaGcbaGaam4qamaaBaaaleaacaWGWbGaaiilaiaadYgaae qaaaaaaOGaayjkaiaawMcaamaalaaabaWaaCbiaeaacaWGTbaaleqa baGaeyOiGClaaaGcbaGaamyBaaaaaaa@5B4D@

Where the first term on the RHS represents the convective term and is scaled by an augmentation factor due to the evaporation of liquid and the second term represents the latent heat effects. θ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaaaa@3891@ is the ratio of heat capacity of the carrier gas to that of the liquid phase of the evaporate.

m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WGTbaaleqabaGaeyOiGClaaaaa@38B4@ is the rate of evaporation of the liquid content and is given by,

m = d m d t = S h 3 S c f m τ p H M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WGTbaaleqabaGaeyOiGClaaOGaeyypa0ZaaSaaaeaacaWGKbGaamyB aaqaaiaadsgacaWG0baaaiabg2da9iabgkHiTmaalaaabaGaam4uai aadIgaaeaacaaIZaGaam4uaiaadogadaWgaaWcbaGaamOzaaqabaaa aOWaaeWaaeaadaWcaaqaaiaad2gaaeaacqaHepaDdaWgaaWcbaGaam iCaaqabaaaaaGccaGLOaGaayzkaaGaamisamaaBaaaleaacaWGnbaa beaaaaa@4C3D@

Where,
  • S h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI gaaaa@37B9@ is the Sherwood number given by S h = 2 + 0.6 ε f 3.5 Re i 0.5 S c f 0.333333 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI gacqGH9aqpcaaIYaGaey4kaSIaaGimaiaac6cacaaI2aGaeqyTdu2a a0baaSqaaiaadAgaaeaacaaIZaGaaiOlaiaaiwdaaaGcciGGsbGaai yzamaaDaaaleaacaWGPbaabaGaaGimaiaac6cacaaI1aaaaOGaam4u aiaadogadaqhaaWcbaGaamOzaaqaaiaaicdacaGGUaGaaG4maiaaio dacaaIZaGaaG4maiaaiodacaaIZaaaaaaa@4F43@ .
  • S c f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado gadaWgaaWcbaGaamOzaaqabaaaaa@38CB@ is the Schmidt number defined as S c f = μ f ρ f D f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado gadaWgaaWcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiabeY7aTnaa BaaaleaacaWGMbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGMbaabe aakiaadseadaWgaaWcbaGaamOzaaqabaaaaaaa@4183@ , D f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGMbaabeaaaaa@37D4@ is mass diffusivity of the fluid.
  • H M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGnbaabeaaaaa@37BF@ is the evaporation potential which is analogous to the temperature difference for heat transfer.
  • m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E6@ is the liquid mass on each particle.

Stokes flow time constant of the particle, τ p = ρ l d p 2 18 μ f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadchaaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWc baGaamiBaaqabaGccaWGKbWaa0baaSqaaiaadchaaeaacaaIYaaaaa GcbaGaaGymaiaaiIdacqaH8oqBdaWgaaWcbaGaamOzaaqabaaaaaaa @43FC@

The evaporation potential H M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGibWaaSbaaSqaaiaad2eaaeqaaaGccaGLOaGaayzkaaaaaa@3952@ , also known as the specific driving potential for mass transfer, is calculated as shown below:

H M = log ( 1 + B M ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGnbaabeaakiabg2da9iGacYgacaGGVbGaai4zaiaacIca caaIXaGaey4kaSIaamOqamaaBaaaleaacaWGnbaabeaakiaacMcaaa a@4064@

B M MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGnbaabeaaaaa@37B9@ is the Spalding transfer number for mass given by,

B M = ψ s , e q ψ f 1 ψ s , e q MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGnbaabeaakiabg2da9maalaaabaGaeqiYdK3aaSbaaSqa aiaadohacaGGSaGaamyzaiaadghaaeqaaOGaeyOeI0IaeqiYdK3aaS baaSqaaiaadAgaaeqaaaGcbaGaaGymaiabgkHiTiabeI8a5naaBaaa leaacaWGZbGaaiilaiaadwgacaWGXbaabeaaaaaaaa@496B@
ψ s , e q = χ s , n e q χ s , n e q + ( 1 χ s , n e q ) ( W m o l , f W m o l , v ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadohacaGGSaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaa aeaacqaHhpWydaWgaaWcbaGaam4CaiaacYcacaWGUbGaamyzaiaadg haaeqaaaGcbaWaaeWaaeaacqaHhpWydaWgaaWcbaGaam4CaiaacYca caWGUbGaamyzaiaadghaaeqaaOGaey4kaSIaaiikaiaaigdacqGHsi slcqaHhpWydaWgaaWcbaGaam4CaiaacYcacaWGUbGaamyzaiaadgha aeqaaOGaaiykaiaacIcadaWcaaqaaiaadEfadaWgaaWcbaGaamyBai aad+gacaWGSbGaaiilaiaadAgaaeqaaaGcbaGaam4vamaaBaaaleaa caWGTbGaam4BaiaadYgacaGGSaGaamODaaqabaaaaOGaaiykaaGaay jkaiaawMcaaaaaaaa@61BB@
χ s , n e q = χ s , e q 2 L K d p β e v a p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaS baaSqaaiaadohacaGGSaGaamOBaiaadwgacaWGXbaabeaakiabg2da 9iabeE8aJnaaBaaaleaacaWGZbGaaiilaiaadwgacaWGXbaabeaaki abgkHiTmaabmaabaWaaSaaaeaacaaIYaGaamitamaaBaaaleaacaWG lbaabeaaaOqaaiaadsgadaWgaaWcbaGaamiCaaqabaaaaaGccaGLOa GaayzkaaGaeqOSdi2aaSbaaSqaaiaadwgacaWG2bGaamyyaiaadcha aeqaaaaa@4F91@
β e v a p = 3 Pr τ p 2 m m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadwgacaWG2bGaamyyaiaadchaaeqaaOGaeyypa0JaeyOe I0YaaeWaaeaadaWcaaqaaiaaiodaciGGqbGaaiOCaiabes8a0naaBa aaleaacaWGWbaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaWaaeWa aeaadaWcaaqaamaaxacabaGaamyBaaWcbeqaaiabgkci3caaaOqaai aad2gaaaaacaGLOaGaayzkaaaaaa@4AA1@
L K = μ f 2 π T p ( R ¯ W m o l , l ) S c f p f , l o c a l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGlbaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaadAgaaeqaaOWaaOaaaeaacaaIYaGaeqiWdaNaamivamaaBaaale aacaWGWbaabeaakiaacIcadaWcaaqaamaanaaabaGaamOuaaaaaeaa caWGxbWaaSbaaSqaaiaad2gacaWGVbGaamiBaiaacYcacaWGSbaabe aaaaGccaGGPaaaleqaaaGcbaGaam4uaiaadogadaWgaaWcbaGaamOz aaqabaGccaWGWbWaaSbaaSqaaiaadAgacaGGSaGaamiBaiaad+gaca WGJbGaamyyaiaadYgaaeqaaaaaaaa@5276@
χ s , e q = p a t m p f , l o c a l e L v W m o l , v R ¯ 1 T b , v 1 T p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaS baaSqaaiaadohacaGGSaGaamyzaiaadghaaeqaaOGaeyypa0ZaaeWa aeaadaWcaaqaaiaadchadaWgaaWcbaGaamyyaiaadshacaWGTbaabe aaaOqaaiaadchadaWgaaWcbaGaamOzaiaacYcacaWGSbGaam4Baiaa dogacaWGHbGaamiBaaqabaaaaaGccaGLOaGaayzkaaGaamyzamaaCa aaleqabaWaaeWaaeaadaqadaqaamaalaaabaGaamitamaaBaaameaa caWG2baabeaaliaadEfadaWgaaadbaGaamyBaiaad+gacaWGSbGaai ilaiaadAhaaeqaaaWcbaWaa0aaaeaacaWGsbaaaaaaaiaawIcacaGL PaaadaqadaqaamaalaaabaGaaGymaaqaaiaadsfadaWgaaadbaGaam OyaiaacYcacaWG2baabeaaaaWccqGHsisldaWcaaqaaiaaigdaaeaa caWGubWaaSbaaWqaaiaadchaaeqaaaaaaSGaayjkaiaawMcaaaGaay jkaiaawMcaaaaaaaa@5FDE@
f 2 = β evap ( e β evap 1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqOSdi2aaSbaaSqa aiaadwgacaWG2bGaamyyaiaadchaaeqaaaGcbaGaaiikaiaadwgada ahaaWcbeqaaiabek7aInaaBaaameaacaWGLbGaamODaiaadggacaWG WbaabeaaaaGccqGHsislcaaIXaGaaiykaaaaaaa@482E@

Where,

ψ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@37C2@ is the mass fraction of vapor and χ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdmgaaa@37AB@ is the mole fraction of vapor. The subscript s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EC@ represents the vicinity of the particle, f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36DF@ represents the free stream, e q MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiaadg haaaa@37D4@ represents equilibrium and n e q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaadw gacaWGXbaaaa@38C6@ represents the non-equilibrium species fractions. W m o l , f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGTbGaam4BaiaadYgacaGGSaGaamOzaaqabaaaaa@3B6E@ is the molecular weight of the carrier gas and W mol,l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGTbGaam4BaiaadYgacaGGSaGaamiBaaqabaaaaa@3B74@ is the molecular weight of the liquid phase of the evaporate. L v MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWccaWGmbWaaS baaWqaaiaadAhaaeqaaaaa@37F8@ is the latent heat of vaporization of the liquid, T b,v MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGIbGaaiilaiaadAhaaeqaaaaa@398B@ is the liquid boiling temperature, T p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGWbaabeaaaaa@37EE@ is the particle temperature. R ¯ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGsbaaaaaa@36DC@ is the universal gas constant, p atm MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGHbGaamiDaiaad2gaaeqaaaaa@39E6@ is the standard atmospheric pressure and p f,local MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGMbGaaiilaiaadYgacaWGVbGaam4yaiaadggacaWGSbaa beaaaaa@3D54@ is the local fluid pressure.