Altair AcuSolve EDEM Coupling

Altair AcuSolve-EDEM coupling sequence for bi-directional coupled simulations is shown below.



Figure 1.
Note: The detailed DEM simulation sequence is not shown here. For detailed information about the DEM simulation sequence, refer to the EDEM help manual.
Note:
  • The temperature and species equations are only solved when the heat transfer and/or mass transfer physics models are active.
  • Since the DEM time step is usually multiple orders lower than the CFD time step, the DEM solver loop is repeated multiple times per single CFD time step to ensure that the physical time is synchronized in both the solvers.
  • For coupled simulations, the data is always exchanged in SI units.
  • For unidirectional coupling, once the coupling forces are calculated and shared with EDEM, the fluid momentum equation is not updated with the coupling force because the effect of particles on fluid is ignored.

AcuSolve-EDEM coupling uses the Eulerian-Lagrangian approach for modeling fluid-particle flows where the fluid transport equations are solved in an Eulerian framework and the dispersed phase is represented as Lagrangian particles. The fluid phase is solved based on the volume-averaged Navier-Stokes equations and the Discrete Element Method (DEM) is used for computing the motion of the solid phase. This coupling strategy allows you to study the momentum and heat transfer at the individual particle scale.

Governing Equations

The volume-averaged Navier-Stokes equations for CFD-DEM momentum coupling are given by:(1)
( ε f ρ f ) t + ( ρ f ε f u f ) = 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaacIcacqaH1oqzpaWaaSbaaSqaa8qa caWGMbaapaqabaGccqaHbpGCdaWgaaWcbaGaamOzaaqabaGccaGGPa aabaWdbiabgkGi2kaadshaaaGaey4kaSIaey4bIeTaeyyXICTaaiik a8aacqaHbpGCdaWgaaWcbaGaamOzaaqabaGcpeGaeqyTdu2damaaBa aaleaapeGaamOzaaWdaeqaaGqabOWdbiaa=vhadaWgaaWcbaGaamOz aaqabaGcpaGaaiyka8qacqGH9aqpcaaIWaaaaa@514E@
(2)
t ε f ρ f v f + ρ f ε f v f v f = ε f p ε f   τ f + ρ f ε f g F p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaqa daWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbi abeg8aYnaaBaaaleaacaWGMbaabeaaieqak8aacaWF2bWaaSbaaSqa aiaadAgaaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiabgEGirlabgw Sixpaabmaapaqaa8qacqaHbpGCdaWgaaWcbaGaamOzaaqabaGccqaH 1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGccaWF2bWaaSbaaSqaai aadAgaaeqaaOGaa8NDamaaBaaaleaacaWGMbaabeaaaOWdbiaawIca caGLPaaacqGH9aqpcqGHsislcqaH1oqzpaWaaSbaaSqaa8qacaWGMb aapaqabaGcpeGaey4bIeTaamiCaiabgkHiTiabew7aL9aadaWgaaWc baWdbiaadAgaa8aabeaak8qacaGGGcGaey4bIeTaeyyXIC9aaeWaa8 aabaaccmWdbiab+r8a0naaBaaaleaacaWGMbaabeaaaOGaayjkaiaa wMcaaiabgUcaRiabeg8aYnaaBaaaleaacaWGMbaabeaakiabew7aL9 aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacaWFNbGaeyOeI0ccbmGa a0Nra8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@740B@
where,
  • ε f   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiaacckaaaa@3A33@ is the fluid volume fraction or porosity;
  • v f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabiaa=zhada WgaaWcbaGaamOzaaqabaaaaa@3800@ is the fluid velocity;
  • ρ f   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiaacckaaaa@3A4C@ is the fluid density;
  • p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@36FE@ is the fluid pressure;
  • τ f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8hXdq3aaSbaaSqaaiaadAgaaeqaaaaa@38ED@ is the viscous stress tensor;
  • g MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa83zaaaa@36FB@ is the gravity vector;
  • F p =   1 V c e l l i f d + f l i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqGH9aqpcaqG GcWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadAfapaWaaSbaaSqaa8 qacaWGJbGaamyzaiaadYgacaWGSbaapaqabaaaaOWdbmaavababeWc paqaa8qacaWGPbaabeqdpaqaa8qacqGHris5aaGcdaqadaWdaeaape GaamOza8aadaahaaWcbeqaa8qacaWGKbaaaOGaey4kaSIaamOza8aa daahaaWcbeqaa8qacaWGSbaaaaGccaGLOaGaayzkaaWdamaaBaaale aapeGaamyAaaWdaeqaaaaa@4BC0@ is the particle-fluid force exchange term;
  • V c e l l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaadogacaWGLbGaamiBaiaadYgaa8aa beaaaaa@3AF2@ is the volume of fluid cell;
  • f d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaWGKbaaaaaa@3829@ is the fluid drag force;
  • f l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaahaaWcbeqaa8qacaWGSbaaaaaa@3831@ is the fluid lift force.
Note: Wherever applicable the following notations are used throughout the document. The subscript f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaaaa@36F4@ denotes a fluid property, p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@36FE@ denotes a particle property and i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@36F7@ denotes that the calculation is done for an individual particle.

Drag Models

The drag models available in AcuSolve-EDEM coupling are listed below:
  1. Ergun-Wen Yu:
    The Ergun-Wen Yu model, also known as the Gidaspow model, reads as:(3)
    f i d =   A 1 ε f 18 ε f 2 + B 18 ε f 2 Re i                           ε f 0.8 C d 24 Re i ε f 3.65                                                         ε f > 0.8 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpcaGGGcWaaiqaa8aabaqbaeqabiqaaaqaa8qadaWcaaWdaeaape Gaamyqamaabmaapaqaa8qacaaIXaGaeyOeI0IaeqyTdu2damaaBaaa leaapeGaamOzaaWdaeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaaG ymaiaaiIdacqaH1oqzpaWaa0baaSqaa8qacaWGMbaapaqaa8qacaaI YaaaaaaakiabgUcaRmaalaaapaqaa8qacaWGcbaapaqaa8qacaaIXa GaaGioaiabew7aL9aadaqhaaWcbaWdbiaadAgaa8aabaWdbiaaikda aaaaaOGaaeOuaiaabwgadaWgaaWcbaGaamyAaaqabaGccaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaeqyTdu2damaaBaaaleaapeGaamOzaa WdaeqaaOWdbiabgsMiJkaaicdacaGGUaGaaGioaaWdaeaapeWaaSaa a8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGKbaapaqabaaakeaape GaaGOmaiaaisdaaaGaaeOuaiaabwgadaWgaaWcbaGaamyAaaqabaGc caaMc8UaeqyTdu2damaaDaaaleaapeGaamOzaaWdaeaapeGaeyOeI0 IaaG4maiaac6cacaaI2aGaaGynaaaakiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyOpa4Ja aGimaiaac6cacaaI4aaaaaGaay5Eaaaaaa@9E96@

    where Re i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabwgadaWgaaWcbaGaamyAaaqabaaaaa@38E0@ is the particle Reynolds number Re i = ρ f ε f v f v p d p μ f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabwgadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcaaWd aeaapeGaeqyWdi3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabew 7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qadaabdaWdaeaaieqa caWF2bWaaSbaaSqaaiaadAgaaeqaaOWdbiabgkHiTiaa=zhapaWaaS baaSqaa8qacaWGWbaapaqabaaak8qacaGLhWUaayjcSdGaamiza8aa daWgaaWcbaWdbiaadchaa8aabeaaaOqaa8qacqaH8oqBpaWaaSbaaS qaa8qacaWGMbaapaqabaaaaaaa@4E41@ .

    v p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDa8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3859@ is the particle velocity and d p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3841@ is the particle’s volume equivalent sphere diameter, A = 150 and B = 1.75. The values of these coefficients can be modified by you while specifying the model inputs.(4)
    C d =   24 Re i 1 + 0.15 Re i 0.687                                             Re i 1000 0.44                                                                                               Re i > 1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaiqaa8aabaqbaeqabiqaaaqaa8qadaWcaaWdaeaapeGaaGOmai aaisdaa8aabaWdbiaabkfacaqGLbWaaSbaaSqaaiaadMgaaeqaaaaa kmaabmaapaqaa8qacaaIXaGaey4kaSIaaGimaiaac6cacaaIXaGaaG ynaiaaykW7caqGsbGaaeyza8aadaqhaaWcbaGaamyAaaqaa8qacaaI WaGaaiOlaiaaiAdacaaI4aGaaG4naaaaaOGaayjkaiaawMcaaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaqGsbGaaeyzamaaBaaa leaacaWGPbaabeaakiabgsMiJkaaigdacaaIWaGaaGimaiaaicdaa8 aabaWdbiaaicdacaGGUaGaaGinaiaaisdacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaabkfacaqGLbWaaSbaaSqaaiaadMga aeqaaOGaeyOpa4JaaGymaiaaicdacaaIWaGaaGimaaaaaiaawUhaaa aa@AEB9@

    here C d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaaaaa@3814@ is the drag coefficient.

    The Ergun-Wen-Yu model is one of the most widely used drag models and is recommended for most of the fluid-particle flows since it works well for both dense phase and dilute phase regimes. In this model, the Ergun equation is used for fluid volume fractions less than 0.8 and the Wen-Yu equation for fluid volume fractions greater than 0.8.

  2. DiFelice(5)
    f i d = C d 24 Re i   ε f χ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpdaWcaaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabe aaaOqaa8qacaaIYaGaaGinaaaacaqGsbGaaeyzamaaBaaaleaacaWG PbaabeaakiaabccacqaH1oqzpaWaa0baaSqaa8qacaWGMbaapaqaa8 qacqGHsislcqaHhpWyaaaaaa@4739@
    where,(6)
    χ = 3.7 0.65 e 0.5 1.5 log 10 Re i 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4XdmMaeyypa0JaaG4maiaac6cacaaI3aGaeyOeI0IaaGimaiaa c6cacaaI2aGaaGynaiaaykW7caWGLbWdamaaCaaaleqabaWdbmaabm aapaqaa8qacqGHsislcaaIWaGaaiOlaiaaiwdadaqadaWdaeaapeGa aGymaiaac6cacaaI1aGaeyOeI0IaciiBaiaac+gacaGGNbWdamaaBa aameaapeGaaGymaiaaicdaa8aabeaal8qacaqGsbGaaeyza8aadaWg aaadbaWdbiaadMgaa8aabeaaaSWdbiaawIcacaGLPaaapaWaaWbaaW qabeaapeGaaGOmaaaaaSGaayjkaiaawMcaaaaaaaa@5400@
    (7)
    C d =   0.63 + 4.8 Re i 0.5 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaeWaa8aabaWdbiaaicdacaGGUaGaaGOnaiaaiodacqGHRaWkca aI0aGaaiOlaiaaiIdacaqGsbGaaeyza8aadaqhaaWcbaGaamyAaaqa a8qacqGHsislcaaIWaGaaiOlaiaaiwdaaaaakiaawIcacaGLPaaapa WaaWbaaSqabeaapeGaaGOmaaaaaaa@491E@

    Unlike the Ergun-Wen-Yu correlation, the Di Felice correlation is a monotonic function of Reynolds number and porosity and does not have the step change in drag force evaluation.

  3. Beetstra(8)
    f i d = 180 ( 1 ε f ) 18 ε f 2 + ε f 2 1 + 1.5 ( 1 ε f ) + 0.413 24 ε f 2 ε f 1 + 3 ( 1 ε f ) ε f + 8.4 Re i 0.343 1 + 10 3 ( 1 ε f ) Re i 1 + 4 ( 1 ε f ) / 2 Re i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdacaaI4aGaaGimai aacIcacaaIXaGaeyOeI0IaeqyTdu2damaaBaaaleaapeGaamOzaaWd aeqaaOGaaiykaaqaa8qacaaIXaGaaGioaiabew7aL9aadaqhaaWcba WdbiaadAgaa8aabaWdbiaaikdaaaaaaaGccaGLOaGaayzkaaGaey4k aSIaeqyTdu2damaaDaaaleaapeGaamOzaaWdaeaapeGaaGOmaaaakm aabmaapaqaa8qacaaIXaGaey4kaSIaaGymaiaac6cacaaI1aWaaOaa a8aabaWdbiaacIcacaaIXaGaeyOeI0IaeqyTdu2damaaBaaaleaape GaamOzaaWdaeqaaOGaaiykaaWcpeqabaaakiaawIcacaGLPaaacqGH RaWkdaqadaWdaeaapeWaaSaaa8aabaWdbiaaicdacaGGUaGaaGinai aaigdacaaIZaaapaqaa8qacaaIYaGaaGinaiabew7aL9aadaqhaaWc baWdbiaadAgaa8aabaWdbiaaikdaaaaaaaGccaGLOaGaayzkaaWaae Waa8aabaWdbmaalaaapaqaa8qacqaH1oqzpaWaa0baaSqaa8qacaWG Mbaapaqaa8qacqGHsislcaaIXaaaaOGaey4kaSIaaG4maiaacIcaca aIXaGaeyOeI0IaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOGa aiyka8qacqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey 4kaSIaaGioaiaac6cacaaI0aGaaeOuaiaabwgapaWaa0baaSqaaiaa dMgaaeaapeGaeyOeI0IaaGimaiaac6cacaaIZaGaaGinaiaaiodaaa aak8aabaWdbiaaigdacqGHRaWkcaaIXaGaaGima8aadaahaaWcbeqa a8qacaaIZaGaaiikaiaaigdacqGHsislcqaH1oqzpaWaaSbaaWqaa8 qacaWGMbaapaqabaWccaGGPaaaaOWdbiaabkfacaqGLbWdamaaDaaa leaacaWGPbaabaWdbiabgkHiTmaabmaapaqaa8qacaaIXaGaey4kaS IaaGinaiaacIcacaaIXaGaeyOeI0IaeqyTdu2damaaBaaameaapeGa amOzaaWdaeqaaSGaaiykaaWdbiaawIcacaGLPaaacaGGVaGaaGOmaa aaaaaakiaawIcacaGLPaaacaqGsbGaaeyzamaaBaaaleaacaWGPbaa beaaaaa@9E18@
  4. Rong(9)
    f i d = 0.5 C d π d e 2 4 ρ f v f v p v f v p ε f 2 β λ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpcaaIWaGaaiOlaiaaiwdacaWGdbWdamaaBaaaleaapeGaamizaa WdaeqaaOWdbmaalaaapaqaa8qacqaHapaCcaWGKbWdamaaDaaaleaa peGaamyzaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaaGinaaaacqaHbp GCdaWgaaWcbaGaamOzaaqabaGcdaabdaWdaeaaieqacaWF2bWaaSba aSqaaiaadAgaaeqaaOWdbiabgkHiTiaa=zhapaWaaSbaaSqaa8qaca WGWbaapaqabaaak8qacaGLhWUaayjcSdWaaeWaa8aabaGaa8NDamaa BaaaleaacaWGMbaabeaak8qacqGHsislcaWF2bWdamaaBaaaleaape GaamiCaaWdaeqaaaGcpeGaayjkaiaawMcaaiabew7aL9aadaqhaaWc baWdbiaadAgaa8aabaWdbiaaikdacqGHsislcqaHYoGycqGHsislcq aH7oaBaaaaaa@5FE9@
    where,(10)
    β = 2.65 ε f + 1 5.3 3.5 ε f   ε f 2 e ( 1.5 log 10 Re i ) 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGOmaiaac6cacaaI2aGaaGynamaabmaapaqa a8qacqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaS IaaGymaaGaayjkaiaawMcaaiabgkHiTmaabmaapaqaa8qacaaI1aGa aiOlaiaaiodacqGHsislcaaIZaGaaiOlaiaaiwdacqaH1oqzpaWaaS baaSqaa8qacaWGMbaapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiab ew7aL9aadaqhaaWcbaWdbiaadAgaa8aabaWdbiaaikdaaaGcpaGaaG PaV=qacaWGLbWdamaaCaaaleqabaWdbmaadmaapaqaa8qacqGHsisl daWcaaWdaeaapeGaaiikaiaaigdacaGGUaGaaGynaiabgkHiTiGacY gacaGGVbGaai4za8aadaWgaaadbaWdbiaaigdacaaIWaaapaqabaWc peGaaeOuaiaabwgadaWgaaadbaGaamyAaaqabaWccaGGPaWdamaaCa aameqabaWdbiaaikdaaaaal8aabaWdbiaaikdaaaaacaGLBbGaayzx aaaaaaaa@65BF@
    (11)
    λ = 1 ε f C D e 0.5 3.5 log 10 Re i 2   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHsislcqaH1oqz paWaaSbaaSqaa8qacaWGMbaapaqabaaak8qacaGLOaGaayzkaaWaae Waa8aabaWdbiaadoeacqGHsislcaWGebGaaGzaVlaaygW7caaMc8Ua aGPaVlaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaaGimaiaac6caca aI1aWaaeWaa8aabaWdbiaaiodacaGGUaGaaGynaiabgkHiTiGacYga caGGVbGaai4za8aadaWgaaadbaWdbiaaigdacaaIWaaapaqabaWcpe GaaeOuaiaabwgadaWgaaadbaGaamyAaaqabaaaliaawIcacaGLPaaa paWaaWbaaWqabeaapeGaaGOmaaaaliaacckaaaaakiaawIcacaGLPa aaaaa@5C5A@
    (12)
    C =   39 φ 20.6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9iaacckacaaIZaGaaGyoaiabeA8aQjabgkHiTiaa ikdacaaIWaGaaiOlaiaaiAdaaaa@400D@
    (13)
    D = 101.8 φ 0.81 2 + 2.4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iaaigdacaaIWaGaaGymaiaac6cacaaI4aWaaeWa a8aabaWdbiabeA8aQjabgkHiTiaaicdacaGGUaGaaGioaiaaigdaai aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa ikdacaGGUaGaaGinaaaa@46D7@

    φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdOgaaa@37C6@ is the sphericity of the particle, d e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@3836@ is the diameter of volume equivalent sphere.

    Since the sphericity of the particle is considered while calculating the drag force, this model is strongly recommended for non-spherical particles compared to the other models available in AcuSolve.

  5. Syamlal-O’Brien
    The correlation reads as:(14)
    f i d = C d Re i ε f 24 v r , p 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpdaWcaaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabe aak8qacaqGsbGaaeyza8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qa cqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaaakeaapeGaaGOmai aaisdaieqacaWF2bWdamaaDaaaleaapeGaamOCaiaacYcacaWGWbaa paqaa8qacaaIYaaaaaaaaaa@48FD@
    where,(15)
    C d =   0.63 + 4.8 Re i v r , s 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaeWaa8aabaWdbiaaicdacaGGUaGaaGOnaiaaiodacqGHRaWkda WcaaWdaeaapeGaaGinaiaac6cacaaI4aaapaqaa8qadaGcaaWdaeaa peWaaSGaa8aabaWdbiaabkfacaqGLbWdamaaBaaaleaapeGaamyAaa WdaeqaaaGcbaacbeWdbiaa=zhapaWaaSbaaSqaa8qacaWGYbGaaiil aiaadohaa8aabeaaaaaapeqabaaaaaGccaGLOaGaayzkaaWdamaaCa aaleqabaWdbiaaikdaaaaaaa@4AE6@
    (16)
    v r , s = A 0.06 Re i + 0.06 Re i 2 + 0.12 2 B A + A 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDa8aadaWgaaWcbaWdbiaadkhacaGGSaGaam4CaaWdaeqa aOWdbiabg2da9maabmaapaqaa8qacaWGbbGaeyOeI0IaaGimaiaac6 cacaaIWaGaaGOnaiaabkfacaqGLbWdamaaBaaaleaapeGaamyAaaWd aeqaaOWdbiabgUcaRmaakaaapaqaa8qadaqadaWdaeaapeGaaGimai aac6cacaaIWaGaaGOnaiaabkfacaqGLbWdamaaBaaaleaapeGaamyA aaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYa aaaOGaey4kaSIaaGimaiaac6cacaaIXaGaaGOmamaabmaapaqaa8qa caaIYaGaamOqaiabgkHiTiaadgeaaiaawIcacaGLPaaacqGHRaWkca WGbbWdamaaCaaaleqabaWdbiaaikdaaaaabeaaaOGaayjkaiaawMca aaaa@59B0@
    (17)
    A =   ε f 4.14 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaiabg2da9iaacckacqaH1oqzpaWaa0baaSqaa8qacaWGMbaa paqaa8qacaaI0aGaaiOlaiaaigdacaaI0aaaaaaa@3EDF@
    (18)
    B =   0.8 ε f 1.28   ε f 0.85 ε f 2.65   ε f 0.85 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiabg2da9iaacckadaGabaWdaeaafaqabeGabaaabaWdbiaa icdacaGGUaGaaGioaiabew7aL9aadaqhaaWcbaWdbiaadAgaa8aaba WdbiaaigdacaGGUaGaaGOmaiaaiIdaaaGccaGGGcGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHKj YOcaaIWaGaaiOlaiaaiIdacaaI1aaapaqaa8qacqaH1oqzpaWaa0ba aSqaa8qacaWGMbaapaqaa8qacaaIYaGaaiOlaiaaiAdacaaI1aaaaO GaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpe GaeyyzImRaaGimaiaac6cacaaI4aGaaGynaiaaykW7aaaacaGL7baa aaa@9F8B@
  6. Wen-Yu
    The Wen-Yu correlation reads as:(19)
    f i d =   C d 24 Re i ε f 3.65 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpcaGGGcWaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGKb aapaqabaaakeaapeGaaGOmaiaaisdaaaGaaeOuaiaabwgapaWaaSba aSqaa8qacaWGPbaapaqabaGcpeGaeqyTdu2damaaDaaaleaapeGaam OzaaWdaeaapeGaeyOeI0IaaG4maiaac6cacaaI2aGaaGynaaaaaaa@492F@
    (20)
    C d =   24 Re i 1 + 0.15 Re i 0.687                                               Re i 1000 0.44                                                                                                               Re i > 1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaiqaa8aabaqbaeqabiqaaaqaa8qadaWcaaWdaeaapeGaaGOmai aaisdaa8aabaWdbiaabkfacaqGLbWdamaaBaaaleaapeGaamyAaaWd aeqaaaaak8qadaqadaWdaeaapeGaaGymaiabgUcaRiaaicdacaGGUa GaaGymaiaaiwdacaqGsbGaaeyza8aadaqhaaWcbaWdbiaadMgaa8aa baWdbiaaicdacaGGUaGaaGOnaiaaiIdacaaI3aaaaaGccaGLOaGaay zkaaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaeOuaiaabwgapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyizImQaaGymaiaaicdacaaIWaGaaGimaaWdaeaapeGaaGimai aac6cacaaI0aGaaGinaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaqGsbGaaeyza8aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGH+aGpcaaIXaGaaGimaiaaicdacaaIWaaaaaGaay5Eaaaaaa@C7B9@
  7. Schiller Nauman
    The correlation reads as:(21)
    f i d =   C d 24 Re i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadsgaaaGccqGH 9aqpcaGGGcWaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGKb aapaqabaaakeaapeGaaGOmaiaaisdaaaGaaeOuaiaabwgapaWaaSba aSqaa8qacaWGPbaapaqabaaaaa@423D@
    (22)
    C d =   24 1 + 0.15 Re i 0.687                                               Re i 1000 0.44                                                                                                               Re i > 1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGH9aqpcaGG GcWaaiqaa8aabaqbaeqabiqaaaqaa8qacaaIYaGaaGinamaabmaapa qaa8qacaaIXaGaey4kaSIaaGimaiaac6cacaaIXaGaaGynaiaabkfa caqGLbWdamaaDaaaleaapeGaamyAaaWdaeaapeGaaGimaiaac6caca aI2aGaaGioaiaaiEdaaaaakiaawIcacaGLPaaacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaqGsbGaaeyza8aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGHKjYOcaaIXaGaaGimaiaaicdacaaIWaaapaqaa8qacaaIWaGa aiOlaiaaisdacaaI0aGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaabkfacaqGLbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWd biabg6da+iaaigdacaaIWaGaaGimaiaaicdaaaaacaGL7baaaaa@C8ED@

    The drag force calculated does not consider the effect of surrounding particles, that is, volume fraction is not accounted for, and hence this model is strictly valid only for dilute phase flows.

Non-Spherical Drag Coefficient Models

The effect of a particle’s shape can be taken into account by using non-spherical drag coefficient models. There are two types of models available in AcuSolve which are listed below. If the non-spherical drag coefficient model is set to none the particles are assumed to be of spherical shape.
  1. Isometric (Haider Levenspiel)
    In this model the drag coefficient is considered to be a function of particle Reynolds number and sphericity. The instantaneous orientation of the particle is not taken into account. This type of model is applicable for particles with shapes closer to a sphere such as rocks, some grains (beans), and when the orientation of the particles is not critical. The user inputs required for this model are particle’s volume and sphericity. The Haider-Levenspiel correlation is given by:(23)
    C d n s =   24 Re i 1 + A 1 Re i A 2 + A 3 1 + A 4 Re i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaakmaaCaaaleqabaWd biaad6gacaWGZbaaaOGaeyypa0JaaiiOamaalaaapaqaa8qacaaIYa GaaGinaaWdaeaapeGaaeOuaiaabwgapaWaa0baaSqaa8qacaWGPbaa paqaaaaaaaGcpeWaamWaa8aabaWdbiaaigdacqGHRaWkcaWGbbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaqGsbGa aeyza8aadaqhaaWcbaWdbiaadMgaa8aabaaaaaGcpeGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaWGbbWdamaaBaaameaapeGaaGOmaaWd aeqaaaaaaOWdbiaawUfacaGLDbaacqGHRaWkdaWcaaWdaeaapeGaam yqa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOqaa8qacaaIXaGaey4k aSYaaSGaa8aabaWdbiaadgeapaWaaSbaaSqaa8qacaaI0aaapaqaba aakeaapeGaaeOuaiaabwgapaWaa0baaSqaa8qacaWGPbaapaqaaaaa aaaaaaaa@57E4@
    where,(24)
    A 1 = e 2.3288 6.4581 φ i + 2.4486 φ i 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG LbWdamaaCaaaleqabaWdbmaabmaapaqaa8qacaaIYaGaaiOlaiaaio dacaaIYaGaaGioaiaaiIdacqGHsislcaaI2aGaaiOlaiaaisdacaaI 1aGaaGioaiaaigdacqaHgpGApaWaaSbaaWqaa8qacaWGPbaapaqaba WcpeGaey4kaSIaaGOmaiaac6cacaaI0aGaaGinaiaaiIdacaaI2aGa eqOXdO2damaaDaaameaapeGaamyAaaWdaeaapeGaaGOmaaaaaSGaay jkaiaawMcaaaaaaaa@51F3@
    (25)
    A 2 = 0.0964 + 0.5565 φ i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaaI WaGaaiOlaiaaicdacaaI5aGaaGOnaiaaisdacqGHRaWkcaaIWaGaai OlaiaaiwdacaaI1aGaaGOnaiaaiwdacqaHgpGApaWaaSbaaSqaa8qa caWGPbaapaqabaaaaa@45BC@
    (26)
    A 3 = 73.69 e 5.0748 φ i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaI 3aGaaG4maiaac6cacaaI2aGaaGyoaiaadwgapaWaaWbaaSqabeaape WaaeWaa8aabaWdbiabgkHiTiaaiwdacaGGUaGaaGimaiaaiEdacaaI 0aGaaGioaiabeA8aQ9aadaWgaaadbaWdbiaadMgaa8aabeaaaSWdbi aawIcacaGLPaaaaaaaaa@4811@
    (27)
    A 4 = 5.378 e 6.2122 φ i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpcaaI 1aGaaiOlaiaaiodacaaI3aGaaGioaiaadwgapaWaaWbaaSqabeaape WaaeWaa8aabaWdbiaaiAdacaGGUaGaaGOmaiaaigdacaaIYaGaaGOm aiabeA8aQ9aadaWgaaadbaWdbiaadMgaa8aabeaaaSWdbiaawIcaca GLPaaaaaaaaa@4718@
  2. Non-spherical (Ganser and Holzer-Sommerfeld)

    The Ganser and Holzer-Sommerfeld models consider both the shape and orientation of the particle. Since the orientation of the particles is also considered, this model is applicable to particle shapes such as disk, ellipsoid and elongated cylinder. The user inputs for these models are volume and aspect ratio of the particles.

    The Ganser correlation is given by:(28)
    C d n s k 2 =   24 k 1 k 2 Re i 1 + 0.1118 k 1 k 2 Re i 0.65657 + 0.4305 1 + 3305 k 1 k 2 Re i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGKbaapaqabaGc daahaaWcbeqaa8qacaWGUbGaam4CaaaaaOWdaeaapeGaam4Aa8aada WgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGaeyypa0JaaiiOamaalaaa paqaa8qacaaIYaGaaGinaaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqa aOWdbiaabkfacaqGLbWdamaaDaaaleaapeGaamyAaaWdaeaaaaaaaO Wdbmaadmaapaqaa8qacaaIXaGaey4kaSIaaGimaiaac6cacaaIXaGa aGymaiaaigdacaaI4aWaaeWaa8aabaWdbiaadUgapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaam4Aa8aadaWgaaWcbaWdbiaaikdaa8aa beaak8qacaqGsbGaaeyza8aadaqhaaWcbaWdbiaadMgaa8aabaaaaa GcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaa iAdacaaI1aGaaGOnaiaaiwdacaaI3aaaaaGccaGLBbGaayzxaaGaey 4kaSYaaSaaa8aabaWdbiaaicdacaGGUaGaaGinaiaaiodacaaIWaGa aGynaaWdaeaapeGaaGymaiabgUcaRmaaliaapaqaa8qacaaIZaGaaG 4maiaaicdacaaI1aaapaqaa8qacaWGRbWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbiaadUgapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpe GaaeOuaiaabwgapaWaa0baaSqaa8qacaWGPbaapaqaaaaaaaaaaaaa @7059@

    Here k 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@380E@ and k 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@380F@ are Stokes and Newton shape factors respectively.

    The Holzer-Sommerfeld correlation is given by:(29)
    C d n s =   8 Re i 1 φ i + 16 Re i 1 φ i + 3 Re i 1 φ i 3 4 +   0.42 × 10 0.4 log 10 φ i 2 1 φ i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadsgaa8aabeaakmaaCaaaleqabaWd biaad6gacaWGZbaaaOGaeyypa0JaaiiOamaalaaapaqaa8qacaaI4a aapaqaa8qacaqGsbGaaeyza8aadaqhaaWcbaWdbiaadMgaa8aabaaa aaaak8qadaWcaaWdaeaapeGaaGymaaWdaeaapeWaaOaaa8aabaWdbi abeA8aQnaaBaaaleaacaWGPbaabeaak8aadaahaaWcbeqaa8qacqGH LkIxaaaabeaaaaGccqGHRaWkdaWcaaWdaeaapeGaaGymaiaaiAdaa8 aabaWdbiaabkfacaqGLbWdamaaDaaaleaapeGaamyAaaWdaeaaaaaa aOWdbmaalaaapaqaa8qacaaIXaaapaqaa8qadaGcaaWdaeaapeGaeq OXdO2aaSbaaSqaaiaadMgaaeqaaaqabaaaaOGaey4kaSYaaSaaa8aa baWdbiaaiodaa8aabaWdbmaakaaapaqaa8qacaqGsbGaaeyza8aada qhaaWcbaWdbiaadMgaa8aabaaaaaWdbeqaaaaakmaalaaapaqaa8qa caaIXaaapaqaa8qacqaHgpGApaWaa0baaSqaa8qacaWGPbaapaqaa8 qadaWccaWdaeaapeGaaG4maaWdaeaapeGaaGinaaaaaaaaaOGaey4k aSIaaiiOaiaaicdacaGGUaGaaGinaiaaikdacaaMc8Uaey41aqRaaG PaVlaaigdacaaIWaWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGin amaabmaapaqaa8qacqGHsislciGGSbGaai4BaiaacEgapaWaaSbaaW qaa8qacaaIXaGaaGimaaWdaeqaaSWdbiabeA8aQ9aadaWgaaadbaWd biaadMgaa8aabeaaaSWdbiaawIcacaGLPaaapaWaaWbaaWqabeaape GaaGOmaaaaaaGcdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqOXdO2a aSbaaSqaaiaadMgaaeqaaOWdamaaCaaaleqabaWdbiabgwQiEbaaaa aaaa@7B4D@

    where, φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaCaaaleqabaWdbiabgwQiEbaaaaa@39C3@ is the crosswise sphericity which is defined as the ratio of projected area of the volume equivalent sphere to the projected area of the particle perpendicular to the flow.

Lift Models

Generally the lift force acts in a direction normal to the relative motion of the fluid and particle. The two components of the lift force considered are Saffman force and Magnus force. The Saffman lift force is due to the pressure gradient on a non-rotating particle in the presence of a non-uniform shear velocity field while the Magnus lift force is due to the particle rotation in a uniform flow. Unlike spherical particles, the behavior of non-spherical particles in turbulent flows is much more complicated and the lift force acting on them can no longer be neglected. As the particle’s principal axis becomes inclined with the flow direction, the effect of lift force on the particle motion becomes significant.

There are three lift models available in AcuSolve:
  1. Saffman-Magnus

    This model is for spherical particles and hence the orientation is neglected whereas the last two models take the particle orientation into account while calculating the lift forces.

    The correlation for the Saffman force is given by:(30)
    f i S a f f m a n = SLC × C l s w i d i 2 μ f ρ f ω 0.5 w i × ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaWcamaaDaaaleaapeGaamyAaaWdaeaapeGaam4uaiaa dggacaWGMbGaamOzaiaad2gacaWGHbGaamOBaaaakiabg2da9iaabo facaqGmbGaae4qaiabgEna0kaadoeapaWaaSbaaSqaa8qacaWGSbGa am4CaaWdaeqaaGqabOGaa83DamaaBaaaleaacaWGPbaabeaak8qaca WGKbWdamaaDaaaleaapeGaamyAaaWdaeaapeGaaGOmaaaakmaakaaa paqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeq yWdi3damaaBaaaleaapeGaamOzaaWdaeqaaaWdbeqaaOWaaqWaa8aa baaccmWdbiab+L8a3bGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacq GHsislcaaIWaGaaiOlaiaaiwdaaaGcdaqadaWdaeaacaWF3bWaaSba aSqaaiaadMgaaeqaaOWdbiabgEna0kab+L8a3bGaayjkaiaawMcaaa aa@632B@
    where ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8xYdChaaa@37DE@ is the particle velocity curl, w i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa83DamaaBaaaleaacaWGPbaabeaaaaa@3824@ is the slip velocity of the particle. SLC is Saffman constant with a default value of 1.615. This value can be modified while specifying the model inputs. C l s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGZbaapaqabaaaaa@3914@ is the Saffman lift coefficient and is given by the expression:(31)
    C l s = e 0.1 Re i + 0.3314   γ i 1 e 0.1 Re i         Re i 40 0.0524 γ i Re i                                 Re i > 40 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGZbaapaqabaGcpeGaeyyp a0Zaaiqaa8aabaqbaeqabiqaaaqaa8qacaWGLbWdamaaCaaaleqaba WdbiabgkHiTiaaicdacaGGUaGaaGymaiaabkfacaqGLbWdamaaBaaa meaapeGaamyAaaWdaeqaaaaak8qacqGHRaWkcaaIWaGaaiOlaiaaio dacaaIZaGaaGymaiaaisdacaGGGcWaaOaaa8aabaWdbiabeo7aN9aa daWgaaWcbaWdbiaadMgaa8aabeaaa8qabeaakmaabmaapaqaa8qaca aIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacqGHsislcaaIWaGa aiOlaiaaigdacaqGsbGaaeyza8aadaWgaaadbaWdbiaadMgaa8aabe aaaaaak8qacaGLOaGaayzkaaGaaiiOaiaacckacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaacckacaGGGcGaaeOuaiaabwgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyizImQaaGinaiaaicdaa8aabaWdbiaaicda caGGUaGaaGimaiaaiwdacaaIYaGaaGinamaakaaapaqaa8qacqaHZo WzpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaeOuaiaabwgapaWa aSbaaSqaa8qacaWGPbaapaqabaaapeqabaGccaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caqGsbGaaeyza8aadaWgaaWcbaWdbiaadMga a8aabeaak8qacqGH+aGpcaaI0aGaaGimaaaaaiaawUhaaaaa@DE49@
    (32)
    γ i = ω d i 2 w i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qadaabdaWdaeaaiiWacqWFjpWDa8qacaGLhWUaayjcSd Gaamiza8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacaaIYaWa aqWaa8aabaWdbiaabEhadaWgaaWcbaGaamyAaaqabaaakiaawEa7ca GLiWoaaaaaaa@47C3@
    The correlation for the Magnus force is given by:(33)
    f i M a g n u s = M L C × C l m w i 2 π d i 2 ρ f μ f ρ f ω r × w i ω r w i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaWcamaaDaaaleaapeGaamyAaaWdaeaapeGaamytaiaa dggacaWGNbGaamOBaiaadwhacaWGZbaaaOGaeyypa0JaamytaiaadY eacaWGdbGaey41aqRaam4qa8aadaWgaaWcbaWdbiaadYgacaWGTbaa paqabaacbeGccaWF3bWaa0baaSqaaiaadMgaaeaacaaIYaaaaOWdbi abec8aWjaadsgapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaaIYaaa aOGaeqyWdi3damaaBaaaleaapeGaamOzaaWdaeqaaOWdbmaakaaapa qaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeqyW di3damaaBaaaleaapeGaamOzaaWdaeqaaaWdbeqaaOWaaSaaa8aaba WdbmaabmaapaqaaGGad8qacqGFjpWDdaWgaaWcbaGaamOCaaqabaGc cqGHxdaTcaWF3bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aapaqaa8qadaabdaWdaeaapeGae4xYdC3aaSbaaSqaaiaadkhaaeqa aaGccaGLhWUaayjcSdWaaqWaa8aabaWdbiaa=DhadaWgaaWcbaGaam yAaaqabaaakiaawEa7caGLiWoaaaaaaa@6C7F@
    (34)
    ω r = 1 2 ω ω i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadiab=L8a3n aaBaaaleaaqaaaaaaaaaWdbiaadkhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaapaGae8xYdC3dbiabgk HiT8aacqWFjpWDdaWgaaWcbaGaamyAaaqabaaaaa@41BA@
    where MLC is Magnus constant with a default value of 0.125. This value can be modified while specifying the model inputs. C l m MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGTbaapaqabaaaaa@390E@ is the Magnus lift coefficient and is given by the expression:(35)
    C l m = d i ω r w i 1         Re i 1 0.178 + 0.822 Re i 0.522                               Re i > 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadYgacaWGTbaapaqabaGcpeGaeyyp a0Jaamiza8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaWcaaWdae aapeWaaqWaa8aabaaccmWdbiab=L8a3naaBaaaleaacaWGYbaabeaa aOGaay5bSlaawIa7aaWdaeaapeWaaqWaa8aabaacbeWdbiaa+Dhada WgaaWcbaGaamyAaaqabaaakiaawEa7caGLiWoaaaWaaiqaa8aabaqb aeqabiqaaaqaa8qacaaIXaGaaiiOaiaacckacaGGGcGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaacckacaqGsbGaaeyza8aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacqGHKjYOcaaIXaaapaqaa8qadaqadaWdaeaa peGaaGimaiaac6cacaaIXaGaaG4naiaaiIdacqGHRaWkcaaIWaGaai OlaiaaiIdacaaIYaGaaGOmaiaabkfacaqGLbWdamaaDaaaleaapeGa amyAaaWdaeaapeGaeyOeI0IaaGimaiaac6cacaaI1aGaaGOmaiaaik daaaaakiaawIcacaGLPaaacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaqGsbGaaeyza8aadaWgaaWcbaWdbiaadMgaa8aa beaak8qacqGH+aGpcaaIXaaaaaGaay5Eaaaaaa@DA56@
  2. Saffman-Magnus non-spherical lift

    This is similar to the Saffman Magnus lift model for spherical lift, except the lift coefficients are replaced by the nonspherical lift coefficient which is explained in the nonspherical lift model section below.

  3. Non-spherical lift
    In this model, the lift coefficient is assumed to be proportional to the drag coefficient and the correlation for the lift force is given by:(36)
    F L =   1 2 C L ρ f π 4 d p 2 v f v i 2   C L C D = sin 2 α cos α         in Newton Law region C L C D = sin 2 α cos α 0.65 + 40 Re 0.72   ( 30 < Re < 1500 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadYeaa8aabeaak8qacqGH9aqpcaGG GcWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaam4qa8aada WgaaWcbaWdbiaadYeaa8aabeaak8qacqaHbpGCpaWaaSbaaSqaa8qa caWGMbaapaqabaGcpeWaaSaaa8aabaWdbiabec8aWbWdaeaapeGaaG inaaaacaWGKbWdamaaDaaaleaapeGaamiCaaWdaeaapeGaaGOmaaaa kmaaemaapaqaaGqab8qacaWF2bWdamaaBaaaleaapeGaamOzaaWdae qaaOWdbiabgkHiTiaa=zhapaWaaSbaaSqaa8qacaWGPbaapaqabaaa k8qacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaaikdaaaGccaGGGc Waaiqaa8aabaqbaeqabiqaaaqaa8qadaWcaaWdaeaapeGaam4qa8aa daWgaaWcbaWdbiaadYeaa8aabeaaaOqaa8qacaWGdbWdamaaBaaale aapeGaamiraaWdaeqaaaaak8qacqGH9aqpciGGZbGaaiyAaiaac6ga paWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aHjabgwSixlGacogaca GGVbGaai4Caiabeg7aHjaacckacaGGGcGaaiiOaiaacckacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaa8aabaWdbiaabMgaca qGUbGaaeiOaiaab6eacaqGLbGaae4DaiaabshacaqGVbGaaeOBaiaa bccacaqGmbGaaeyyaiaabEhacaqGGcGaaeOCaiaabwgacaqGNbGaae yAaiaab+gacaqGUbaacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oapaqaa8qa daWcaaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaadYeaa8aabeaaaO qaa8qacaWGdbWdamaaBaaaleaapeGaamiraaWdaeqaaaaak8qacqGH 9aqpdaWcaaWdaeaapeGaci4CaiaacMgacaGGUbWdamaaCaaaleqaba WdbiaaikdaaaGccqaHXoqycqGHflY1ciGGJbGaai4BaiaacohacqaH Xoqya8aabaWdbiaaicdacaGGUaGaaGOnaiaaiwdacqGHRaWkcaaI0a GaaGimaiaabkfacaqGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGa aG4naiaaikdaaaaaaOGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caGGOaGaaG4maiaaicdacqGH8aapcaqGsbGaae yzaiabgYda8iaaigdacaaI1aGaaGimaiaaicdacaGGPaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aaaacaGL7baaaaa@35B4@
    Here the drag coefficient is obtained from the drag force calculation. The direction of the lift force is given by:(37)
    e ^ L o =   u i v f i u i v f i u i × v f i × v f i u i × v f i × v f i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyza8aagaqcamaaBaaaleaapeGaamita8aadaWgaaadbaWdbiaa d+gaa8aabeaaaSqabaGcpeGaeyypa0JaaiiOamaalaaapaqaaGqab8 qacaWF1bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgwSixlqa dAhapaGbauaadaWgaaWcbaWdbiaadAgacaWGPbaapaqabaaakeaape WaaqWaa8aabaWdbiaa=vhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyyXICTabmODa8aagaqbamaaBaaaleaapeGaamOzaiaadMgaa8 aabeaaaOWdbiaawEa7caGLiWoaaaWaaSaaa8aabaWdbmaabmaapaqa a8qacaWF1bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgEna0k qadAhapaGbauaadaWgaaWcbaWdbiaadAgacaWGPbaapaqabaaak8qa caGLOaGaayzkaaGaey41aqRabmODa8aagaqbamaaBaaaleaapeGaam OzaiaadMgaa8aabeaaaOqaa8qadaqadaWdaeaapeGaa8xDa8aadaWg aaWcbaWdbiaadMgaa8aabeaak8qacqGHxdaTceWG2bWdayaafaWaaS baaSqaa8qacaWGMbGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiab gEna0kqadAhapaGbauaadaWgaaWcbaWdbiaadAgacaWGPbaapaqaba aaaaaa@6CE4@

    where, u i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@384B@ is the particle principal axis and v f i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaqbamaaBaaaleaapeGaamOzaiaadMgaa8aabeaaaaa@3943@ is the relative velocity vector of the particle.

Torque Models

By using the torque models, the rotational drag force on the rotating particles due to the inertia of fluid can be considered. The three types of torque models available in AcuSolve are pitching torque, rotational torque and a combination of both.
  1. Pitching torque
    When the center of pressure xcp acting on a non-spherical particle does not coincide with the center of mass of the particle xcm, a hydrodynamic pitching torque (also known as offset torque) results and acts around the axis perpendicular to the plane of relative fluid velocity and particle orientation vector. The pitching torque can change the angle of incidence of the particle. The expression used for calculating the pitching torque is given by:(38)
    T = Δ x × F MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hvaiabg2da9iabgs5aejaadIhacqGHxdaTcaWFgbaaaa@3D32@
    where, Δ x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamiEaaaa@386D@ is the distance between the center of pressure and the center of mass of the particle and is given by the expression:(39)
    Δ x = L 4 1 sin α 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamiEaiabg2da9maalaaapaqaa8qacaWGmbaapaqaa8qa caaI0aaaamaabmaapaqaa8qacaaIXaGaeyOeI0YaaeWaa8aabaWdbi GacohacaGGPbGaaiOBaiabeg7aHbGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaIZaaaaaGccaGLOaGaayzkaaaaaa@45D2@

    Where, L MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaaaa@36DA@ is the length of the particle and α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@37A8@ is the angle of inclination of the particle. F MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Nraaaa@36DC@ is the total aerodynamic force (sum of drag and lift force) acting on the particle.

  2. Rotational torque
    A particle experiences rotational torque, also known as rolling friction torque, when there is a difference between the local fluid rotation and the angular velocity of the particle. The rotational torque is applied at the center of mass of the particle and is given by the expression:(40)
    T = ρ f 2 d p 2 5 c r 1 2 × v f ω p 1 2 × v f ω p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hvaiabg2da9maalaaapaqaa8qacqaHbpGCpaWaaSbaaSqa a8qacaWGMbaapaqabaaakeaapeGaaGOmaaaadaqadaWdaeaapeWaaS aaa8aabaWdbiaadsgapaWaaSbaaSqaa8qacaWGWbaapaqabaaakeaa peGaaGOmaaaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaa aakiaadogapaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeWaaqWaa8aa baWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiabgEGirl abgEna0Iqabiaa+zhadaWgaaWcbaGaamOzaaqabaGccqGHsisliiWa cqqFjpWDdaWgaaWcbaGaamiCaaqabaaakiaawEa7caGLiWoadaqada WdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaey4b IeTaey41aqRaa4NDamaaBaaaleaacaWGMbaabeaakiabgkHiTiab9L 8a3naaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaaaaa@5FF5@
    (41)
    c r = 64 π Re r                 Re r 32 12.9 Re r 0.5 + 128.4 Re r                   32 Re r 1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ya8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH9aqpdaGa baWdaeaafaqabeGabaaabaWdbmaalaaapaqaa8qacaaI2aGaaGinai abec8aWbWdaeaapeGaaeOuaiaabwgapaWaaSbaaSqaa8qacaWGYbaa paqabaaaaOWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaai iOaiaacckacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaiiOaiaabkfacaqGLb WdamaaBaaaleaapeGaamOCaaWdaeqaaOWdbiabgsMiJkaaiodacaaI Yaaapaqaa8qadaWcaaWdaeaapeGaaGymaiaaikdacaGGUaGaaGyoaa WdaeaapeGaaeOuaiaabwgapaWaa0baaSqaa8qacaWGYbaapaqaa8qa caaIWaGaaiOlaiaaiwdaaaaaaOGaey4kaSYaaSaaa8aabaWdbiaaig dacaaIYaGaaGioaiaac6cacaaI0aaapaqaa8qacaqGsbGaaeyza8aa daWgaaWcbaWdbiaadkhaa8aabeaaaaGcpeGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaiodacaaIYaGaeSOAI0JaaeOuai aabwgapaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeGaeSOAI0JaaGym aiaaicdacaaIWaGaaGimaaaaaiaawUhaaaaa@F610@
    (42)
    Re r = ρ f d p 2 0.5 × v f ω p μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOuaiaabwgapaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaadAgaa8aabe aak8qacaWGKbWdamaaDaaaleaapeGaamiCaaWdaeaapeGaaGOmaaaa kmaaemaapaqaa8qacaaIWaGaaiOlaiaaiwdacqGHhis0cqGHxdaTie qacaWF2bWaaSbaaSqaaiaadAgaaeqaaOGaeyOeI0cccmGae4xYdC3a aSbaaSqaaiaadchaaeqaaaGccaGLhWUaayjcSdaapaqaa8qacqaH8o qBaaaaaa@5180@

    Here, v f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabiaa=zhada WgaaWcbaGaamOzaaqabaaaaa@3800@ is the velocity of the fluid and ω p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadabaaaaaaa aapeGae8xYdC3aaSbaaSqaaiaadchaaeqaaaaa@38FF@ is the angular velocity of the particle.

  3. Pitching rotational torque

    When the pitching rotational torque model is selected, both pitching torque and rotational torque are applied on the particle.

Heat Transfer Governing Equations

When heat transfer is active, in addition to the momentum equation, the energy conservation equations for the fluid and the particle are solved simultaneously to obtain the temperature of each phase. The governing equations for obtaining the temperatures of the particles and fluid are described below:(43)
t ρ ε f C pf T f +. v f ρ f ε f C pf T f = . ε f k f T f + Q p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamiDaaaadaqa daWdaeaapeGaeqyWdiNaeqyTdu2damaaBaaaleaapeGaamOzaaWdae qaaOWdbiaadoeapaWaaSbaaSqaa8qacaWGWbGaamOzaaWdaeqaaOWd biaadsfapaWaaSbaaSqaa8qacaWGMbaapaqabaaak8qacaGLOaGaay zkaaGaey4kaSIaey4bIeTaaiOlamaabmaapaqaaGqabiaa=zhadaWg aaWcbaGaamOzaaqabaGcpeGaeqyWdi3damaaBaaaleaapeGaamOzaa WdaeqaaOWdbiabew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaak8qa caWGdbWdamaaBaaaleaapeGaamiCaiaadAgaa8aabeaak8qacaWGub WdamaaBaaaleaapeGaamOzaaWdaeqaaaGcpeGaayjkaiaawMcaaiab g2da9iaabckacqGHhis0caGGUaWaaeWaa8aabaWdbiabew7aL9aada WgaaWcbaWdbiaadAgaa8aabeaak8qacaWGRbWdamaaBaaaleaapeGa amOzaaWdaeqaaOWdbiabgEGirlaadsfapaWaaSbaaSqaa8qacaWGMb aapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaamyua8aadaWgaaWc baWdbiaadchaa8aabeaaaaa@6A5E@
Where Q p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@382E@ represents the heat source term resulting from the heat transfer from the particle.(44)
Q p = i=0 N p h fp A p T p T f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqGH9aqpdaGf WbqabSWdaeaapeGaamyAaiabg2da9iaaicdaa8aabaWdbiaad6eapa WaaSbaaWqaa8qacaWGWbaapaqabaaaneaapeGaeyyeIuoaaOGaamiA a8aadaWgaaWcbaWdbiaadAgacaWGWbaapaqabaGcpeGaamyqa8aada WgaaWcbaWdbiaadchaa8aabeaak8qadaqadaWdaeaapeGaamiva8aa daWgaaWcbaWdbiaadchaa8aabeaak8qacqGHsislcaWGubWdamaaBa aaleaapeGaamOzaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4D40@
A p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@381E@ is the surface area of the particle, T p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3831@ is the particle temperature and T f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@3827@ is the fluid temperature. The heat transfer coefficient ( h f p MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaadAgacaWGWbaapaqabaaaaa@3930@ ) is calculated using the empirical correlation given by Nu p = h f p d p k f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOtaiaabwhapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiaadIgapaWaaSbaaSqaa8qacaWGMbGaamiCaa WdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbaapaqabaaakeaa peGaam4Aa8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaaaaa@4238@ where the Nusselt number is calculated using the following expression:(45)
Nu p = 710 ε f +5 ε f 2 1+0.7 Re p 0.2 Pr 0.33 + 1.332.40 ε f +1.20 ε f 2 Re p 0.7 Pr 0.33 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOtaiaabwhapaWaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiaaiEdacqGHsislcaaIXaGaaGimaiabew7aL9 aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHRaWkcaaI1aGaeqyT du2damaaBaaaleaapeGaamOzaaWdaeqaaOWaaWbaaSqabeaapeGaaG OmaaaaaOGaayjkaiaawMcaamaadmaapaqaa8qacaaIXaGaey4kaSIa aGimaiaac6cacaaI3aGaaeOuaiaabwgapaWaa0baaSqaa8qacaWGWb aapaqaa8qacaaIWaGaaiOlaiaaikdaaaGccaqGqbGaaeOCa8aadaah aaWcbeqaa8qacaaIWaGaaiOlaiaaiodacaaIZaaaaaGccaGLBbGaay zxaaGaey4kaSYaaeWaa8aabaWdbiaaigdacaGGUaGaaG4maiaaioda cqGHsislcaaIYaGaaiOlaiaaisdacaaIWaGaeqyTdu2damaaBaaale aapeGaamOzaaWdaeqaaOWdbiabgUcaRiaaigdacaGGUaGaaGOmaiaa icdacqaH1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcdaahaaWcbe qaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaaeOuaiaabwgapaWaa0ba aSqaa8qacaWGWbaapaqaa8qacaaIWaGaaiOlaiaaiEdaaaGccaqGqb GaaeOCa8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaiodacaaIZaaa aaaa@7630@

Where Pr MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeiuaiaabkhaaaa@37D1@ is the Prandtl number given by Pr = μ f C p f k f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiuaiaabkhacqGH9aqpdaWcaaWdaeaapeGaeqiVd02damaaBaaa leaapeGaamOzaaWdaeqaaOWdbiaadoeapaWaaSbaaSqaa8qacaWGWb GaamOzaaWdaeqaaaGcbaWdbiaadUgapaWaaSbaaSqaa8qacaWGMbaa paqabaaaaaaa@416C@ .