Eulerian Multiphase Models

Eulerian multiphase models are used to model interpenetrating fields. The concept of volume fraction is used to model different phases. Nonetheless, the velocities of the phases can differ. Generally, in this type of multiphase flows, there are dispersed phases such as bubbles, droplets, or particles within a carrier field. There are three main approaches for modeling:
Euler-Euler
In this approach, separate but coupled momentum equations, along with individual volume fractions for each phase, are solved to compute the velocities and volume fractions of the phases. This is the most accurate but also the most computationally expensive approach.
Algebraic-Euler (Mixture)
In mixture theory, a single mixture momentum equation, together with volume fraction equations for the phase, except one, is solved. The relative velocity of phases is calculated using the Algebraic Slip Model (ASM).
Homogeneous
The homogeneous model is the simplest model and in practice is similar with mixture model, but it assumes that all phases move with the same velocity. Technically, ASM is ignored.

Phasic Equations

As each phase in Eulerian multiphase models moves with different velocities, individual momentum equations govern their motion. The phasic continuity (volume fraction) and momentum equations for each phase k can be written as:

Phasic continuity equation

t α k ρ k + α k ρ k u k =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaamaabmaabaGaeqySde2aaSbaaSqa aiaadUgaaeqaaOGaeqyWdi3aaSbaaSqaaiaadUgaaeqaaaGccaGLOa GaayzkaaGaey4kaSIaey4bIeTaeyyXIC9aaeWaaeaacqaHXoqydaWg aaWcbaGaam4AaaqabaGccqaHbpGCdaWgaaWcbaGaam4AaaqabaGcca WG1bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaeyypa0Ja aGimaaaa@50C7@

where α k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeySdmaaBaaaleaacaWGRbaabeaaaaa@3860@ is the volume fraction of phase k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@36FD@ , ρ k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadUgaaeqaaaaa@38E9@ is the density of phase k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@36FD@ , and u k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDamaaBaaaleaacaWGRbaabeaaaaa@3823@ is the velocity of phase k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@36FD@ .

Momentum equation for each phase

t α k ρ k u k + α k ρ k u k u k = α k p + α k τ k + α k ρ k g + M k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaamaabmaabaGaeqySde2aaSbaaSqa aiaadUgaaeqaaOGaeqyWdi3aaSbaaSqaaiaadUgaaeqaaOGaamyDam aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabgUcaRiabgEGi rlabgwSixpaabmaabaGaeqySde2aaSbaaSqaaiaadUgaaeqaaOGaeq yWdi3aaSbaaSqaaiaadUgaaeqaaOGaamyDamaaBaaaleaacaWGRbaa beaakiaadwhadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacq GH9aqpcqGHsislcqaHXoqydaWgaaWcbaGaam4AaaqabaGccqGHhis0 caWGWbGaey4kaSIaey4bIeTaeyyXICTaeqySde2aaSbaaSqaaiaadU gaaeqaaOWaaeWaaeaacqaHepaDdaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaacqGHRaWkcqaHXoqydaWgaaWcbaGaam4AaaqabaGccq aHbpGCdaWgaaWcbaGaam4AaaqabaGccaWGNbGaey4kaSIaamytamaa BaaaleaacaWGRbaabeaaaaa@70AE@

where p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@3702@ is the pressure, τ k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3aaSbaaSqaaiaadUgaaeqaaaaa@38EE@ is the stress tensor of phase k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@36FD@ , g MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zaaaa@36F9@ is the gravitational acceleration, and M k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytamaaBaaaleaacaWGRbaabeaaaaa@37FB@ represents the momentum exchange between phases.

The last term in the momentum equation represents the momentum exchange between phases. This momentum exchange occurs due to interfacial forces between phases. These forces include drag force, lift force, turbulent dispersion force, wall lubrication force, virtual mass force, surface tension and solid collision force.

In Eulerian multiphase models, individual continuity and momentum equations are solved for the phasic mass (volume) and velocity, while the pressure field is assumed to be shared among all phases. To calculate the shared pressure field, the mean continuity and momentum equations are derived from the phasic equations and solved for the mean velocity of the phases and the shared pressure. The mean continuity and momentum equations are obtained by summing the individual phasic equations as follows:

t k = 1 n α k ρ k + k = 1 n α k ρ k u k = 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaamaaqadabaWaaeWaaeaacqaHXoqy daWgaaWcbaGaam4AaaqabaGccqaHbpGCdaWgaaWcbaGaam4Aaaqaba aakiaawIcacaGLPaaaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamOB aaqdcqGHris5aOGaey4kaSIaey4bIeTaeyyXIC9aaabmaeaadaqada qaaiabeg7aHnaaBaaaleaacaWGRbaabeaakiabeg8aYnaaBaaaleaa caWGRbaabeaakiaadwhadaWgaaWcbaGaam4AaaqabaaakiaawIcaca GLPaaaaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5 aOGaeyypa0JaaGimaaaa@5C27@
t k = 1 n α k ρ k u k + k = 1 n α k ρ k u k u k = k = 1 n α k p + k = 1 n α k τ k + k = 1 n α k ρ k g MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaamaaqadabaWaaeWaaeaacqaHXoqy daWgaaWcbaGaam4AaaqabaGccqaHbpGCdaWgaaWcbaGaam4Aaaqaba GccaWG1bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaleaa caWGRbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabgUcaRi abgEGirlabgwSixpaaqadabaWaaeWaaeaacqaHXoqydaWgaaWcbaGa am4AaaqabaGccqaHbpGCdaWgaaWcbaGaam4AaaqabaGccaWG1bWaaS baaSqaaiaadUgaaeqaaOGaamyDamaaBaaaleaacaWGRbaabeaaaOGa ayjkaiaawMcaaaWcbaGaam4Aaiabg2da9iaaigdaaeaacaWGUbaani abggHiLdGccqGH9aqpcqGHsisldaaeWaqaamaabmaabaGaeqySde2a aSbaaSqaaiaadUgaaeqaaOGaey4bIeTaamiCaaGaayjkaiaawMcaaa WcbaGaam4Aaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGH RaWkcqGHhis0cqGHflY1daaeWaqaamaabmaabaGaeqySde2aaSbaaS qaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGRbGaeyypa0Ja aGymaaqaaiaad6gaa0GaeyyeIuoakiabes8a0naaBaaaleaacaWGRb aabeaakiabgUcaRmaaqadabaWaaeWaaeaacqaHXoqydaWgaaWcbaGa am4AaaqabaGccqaHbpGCdaWgaaWcbaGaam4AaaqabaGccaWGNbaaca GLOaGaayzkaaaaleaacaWGRbGaeyypa0JaaGymaaqaaiaad6gaa0Ga eyyeIuoaaaa@8D56@

The mixture density and mixture velocity of the multiphase system are defined as:
ρ m = k = 1 n α k ρ k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaaeyBaaWdaeqaaOWdbiabg2da9maa vadabeWcpaqaa8qacaWGRbGaeyypa0JaaGymaaWdaeaapeGaamOBaa qdpaqaa8qacqGHris5aaGccqaHXoqypaWaaSbaaSqaa8qacaWGRbaa paqabaGcpeGaeqyWdi3damaaBaaaleaapeGaam4AaaWdaeqaaaaa@4658@
u m = 1 ρ m k = 1 n α k ρ k u k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyDa8aadaWgaaWcbaWdbiaab2gaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaam yBaaWdaeqaaaaak8qadaqfWaqabSWdaeaapeGaam4Aaiabg2da9iaa igdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaeqySde2dam aaBaaaleaapeGaam4AaaWdaeqaaOWdbiabeg8aY9aadaWgaaWcbaWd biaadUgaa8aabeaak8qacaWG1bWdamaaBaaaleaapeGaam4AaaWdae qaaaaa@4C1D@
Note: The phasic velocity differs from the mixture velocity, and the relative velocity between them is referred to as the drift velocity, which is defined as the velocity difference between the velocity of the disperse phase, for example, bubbles, droplets, or particles, and the velocity of the mixture.

The drift velocity accounts for the relative motion between phases, which arises due to differences in density, buoyancy, or interaction forces such as drag.

u k u m = u k d r i f t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaabUgaa8aabeaak8qacqGHsislcaqG 1bWdamaaBaaaleaapeGaaeyBaaWdaeqaaOWdbiabg2da9iaadwhapa Waa0baaSqaa8qacaWGRbaapaqaa8qacaWGKbGaamOCaiaadMgacaWG MbGaamiDaaaaaaa@43BF@

Using the mixture density and velocity, the mixture continuity and momentum equations can be derived through straightforward mathematical manipulations as:

ρ m t + · ( ρ m u m )   = 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kabeg8aY9aadaWgaaWcbaWdbiaab2ga a8aabeaaaOqaa8qacqGHciITcaqG0baaaiabgUcaRiabgEGirlabl+ y6NjaabIcacqaHbpGCpaWaaSbaaSqaa8qacaWGTbaapaqabaGcpeGa amyDa8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qacaqGPaGaaiiOai abg2da9iaaicdaaaa@4BBC@
t ρ m u m + ρ m u m u m = p k = 1 n ( α k ρ k u k drift u k drift ) + τ k + ρ m g MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaamaabmaabaaeaaaaaaaaa8qacqaH bpGCpaWaaSbaaSqaa8qacaWGTbaapaqabaGcpeGaamyDa8aadaWgaa WcbaWdbiaad2gaa8aabeaaaOGaayjkaiaawMcaaiabgUcaRiabgEGi rlabgwSixpaabmaabaWdbiabeg8aY9aadaWgaaWcbaWdbiaad2gaa8 aabeaak8qacaWG1bWdamaaBaaaleaapeGaamyBaaWdaeqaaOGaamyD amaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgk HiTiabgEGirlaadchacqGHsislcqGHhis0cqGHflY1daaeWaqaaiaa cIcacqaHXoqydaWgaaWcbaGaam4AaaqabaGccqaHbpGCdaWgaaWcba Gaam4AaaqabaGccaWG1bWaa0baaSqaaiaadUgaaeaacaqGKbGaaeOC aiaabMgacaqGMbGaaeiDaaaakiaadwhadaqhaaWcbaGaam4Aaaqaai aabsgacaqGYbGaaeyAaiaabAgacaqG0baaaOGaaiykaaWcbaGaam4A aiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGHRaWkcqGHhi s0cqGHflY1cqaHepaDdaWgaaWcbaGaam4AaaqabaGccqGHRaWkcqaH bpGCdaWgaaWcbaGaamyBaaqabaGccaWGNbaaaa@7E93@

These two equations are solved in AcuSolve using flow stagger to obtain the mixture velocity and pressure fields.

Eulerian-Eulerian

If the preferred multiphase approach is Eulerian-Eulerian, the mixture continuity and momentum equations are solved in the flow stagger for the mean velocity and pressure. For each dispersed field (k=1,…n-1), individual phasic continuity and momentum equations are solved to obtain the phasic values of volume fraction and velocity.

Algebraic-Eulerian

Similar to Eulerian-Eulerian, the mixture continuity and momentum equations are solved in the flow stagger for the mean velocity and pressure. For each dispersed field (k=1,…n-1), one phasic continuity equation is solved for the phasic values of volume fraction. However, instead of solving for phasic momentum equation, an algebraic equation is solved for the phasic velocity. Algebraic equation is derived following algebra slip model.

Algebraic slip model

The algebraic slip model is used to avoid solving the full phasic momentum equations. To achieve this, the phasic and mean momentum equations are written in non-conservative form (using the mean phasic continuity equations):

α k ρ k t u k + α k ρ k u k u k = α k p + α k τ k + α k ρ k g + M k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadUgaaeqaaOGaeqyWdi3aaSbaaSqaaiaadUgaaeqaaOWa aSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaabmaabaGaamyDam aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiabgUcaRiabeg7a HnaaBaaaleaacaWGRbaabeaakiabeg8aYnaaBaaaleaacaWGRbaabe aakiaadwhadaWgaaWcbaGaam4AaaqabaGccqGHhis0daqadaqaaiaa dwhadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacqGH9aqpcq GHsislcqaHXoqydaWgaaWcbaGaam4AaaqabaGccqGHhis0caWGWbGa ey4kaSIaey4bIeTaeyyXICTaeqySde2aaSbaaSqaaiaadUgaaeqaaO WaaeWaaeaacqaHepaDdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGL PaaacqGHRaWkcqaHXoqydaWgaaWcbaGaam4AaaqabaGccqaHbpGCda WgaaWcbaGaam4AaaqabaGccaWGNbGaey4kaSIaamytamaaBaaaleaa caWGRbaabeaaaaa@6E63@
t ρ m u m + ρ m u m u m =p+ τ m + ρ m g MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITaeaacqGHciITcaWG0baaamaabmaabaaeaaaaaaaaa8qacqaH bpGCpaWaaSbaaSqaa8qacaWGTbaapaqabaGcpeGaamyDa8aadaWgaa WcbaWdbiaad2gaa8aabeaaaOGaayjkaiaawMcaaiabgUcaR8qacqaH bpGCpaWaaSbaaSqaa8qacaWGTbaapaqabaGcpeGaamyDa8aadaWgaa WcbaWdbiaad2gaa8aabeaakiabgEGirpaabmaabaGaamyDamaaBaaa leaacaWGTbaabeaaaOGaayjkaiaawMcaaiabg2da9iabgkHiTiabgE GirlaadchacqGHRaWkcqGHhis0cqGHflY1cqaHepaDdaWgaaWcbaGa amyBaaqabaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaamyBaaqabaGcca WGNbaaaa@5D48@

These equations can be subtracted to eliminate pressure gradient terms. In addition, the following assumptions are made:
  • It is assumed that the disperse phase reaches terminal velocity instantaneously, allowing for the transient terms in the phasic equation to be ignored.
  • Viscous and drift stresses are ignored.
  • Phasic advection is assumed to be equal to the mean acceleration, as follows:
    u k · u k = u m ·  u m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGHhis0cqWI pM+zdaqadaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaadUgaa8aabe aaaOWdbiaawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGa amyBaaWdaeqaaOWdbiabgEGirlabl+y6NjaacckadaqadaWdaeaape GaamyDa8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOWdbiaawIcacaGL Paaaaaa@4CEF@

Applying these assumptions to the combined equations results in the following:

M k = α k ρ k ρ m u m t +  u m   u m g MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpcqaH XoqypaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeWaaeWaa8aabaWdbi abeg8aY9aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGHsislcqaH bpGCpaWaaSbaaSqaa8qacaWGTbaapaqabaaak8qacaGLOaGaayzkaa WaaeWaaeaadaWcaaWdaeaapeGaeyOaIyRaamyDa8aadaWgaaWcbaWd biaad2gaa8aabeaaaOqaa8qacqGHciITcaqG0baaaiabgUcaRiaacc kacaWG1bWdamaaBaaaleaapeGaamyBaaWdaeqaaOWdbiabgEGirlab gwSixlaacckadaqadaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaab2 gaa8aabeaaaOWdbiaawIcacaGLPaaacqGHsislcaWGNbaacaGLOaGa ayzkaaaaaa@5C3F@

As a final assumption, the momentum exchange between phases is considered to be primarily due to drag force, and optionally lift, as follows:

M k = 1 2 ρ c   C D A k u k   u c u k   u c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacqaHbpGCpaWaaSbaaS qaa8qacaqGJbaapaqabaGcpeGaaiiOaiaaboeapaWaaSbaaSqaa8qa caWGebaapaqabaGcpeGaaeyqa8aadaWgaaWcbaWdbiaabUgaa8aabe aak8qadaabdaWdaeaapeWaaeWaa8aabaWdbiaadwhapaWaaSbaaSqa a8qacaWGRbaapaqabaGcpeGaaiiOaiabgkHiTiaadwhapaWaaSbaaS qaa8qacaWGJbaapaqabaaak8qacaGLOaGaayzkaaaacaGLhWUaayjc SdWaaeWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaaiiOaiabgkHiTiaadwhapaWaaSbaaSqaa8qacaWGJbaapaqa baaak8qacaGLOaGaayzkaaaaaa@5790@

where   u k s l i p = u k   u c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadwhapaWaa0baaSqaa8qacaWGRbaapaqaa8qacaWGZbGa amiBaiaadMgacaWGWbaaaOGaeyypa0JaamyDa8aadaWgaaWcbaWdbi aadUgaa8aabeaak8qacaGGGcGaeyOeI0IaamyDa8aadaWgaaWcbaWd biaadogaa8aabeaaaaa@450D@ . Therefore, the final form of the algebraic slip model becomes:

u k slip u k slip = 4 3 ρ k ρ m ρ k   u m t +  u m u m g MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiaadwhapaWaa0baaSqaa8qacaWGRbaapaqaa8qa caWGZbGaamiBaiaadMgacaWGWbaaaaGccaGLhWUaayjcSdGaamyDa8 aadaqhaaWcbaWdbiaadUgaa8aabaWdbiaadohacaWGSbGaamyAaiaa dchaaaGcpaGaeyypa0Zdbmaalaaapaqaa8qacaaI0aaapaqaa8qaca aIZaaaamaalaaapaqaa8qadaqadaWdaeaapeGaeqyWdi3damaaBaaa leaapeGaam4AaaWdaeqaaOWdbiabgkHiTiabeg8aY9aadaWgaaWcba Wdbiaad2gaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiabeg8a Y9aadaWgaaWcbaWdbiaadUgaa8aabeaaaaGcpeGaaiiOamaabmaaba WaaSaaa8aabaWdbiabgkGi2kaadwhapaWaaSbaaSqaa8qacaWGTbaa paqabaaakeaapeGaeyOaIyRaamiDaaaacqGHRaWkcaGGGcGaamyDa8 aadaWgaaWcbaWdbiaad2gaa8aabeaak8qacqGHhis0cqGHflY1daqa daWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOWdbi aawIcacaGLPaaacqGHsislcaWGNbaacaGLOaGaayzkaaaaaa@6BFB@

The slip velocity and mean velocity are used to obtain the phasic velocity as follows:

u k d r i f t = u k s l i p 1 ρ m k = 1 n α k ρ k u k s l i p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadUgaa8aabaWdbiaadsgacaWGYbGa amyAaiaadAgacaWG0baaaOGaeyypa0JaamyDa8aadaqhaaWcbaWdbi aadUgaa8aabaWdbiaadohacaWGSbGaamyAaiaadchaaaGccqGHsisl daWcaaWdaeaapeGaaGymaaWdaeaapeGaeqyWdi3damaaBaaaleaape GaamyBaaWdaeqaaaaak8qadaqfWaqabSWdaeaapeGaam4Aaiabg2da 9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaeqySde 2damaaBaaaleaapeGaam4AaaWdaeqaaOWdbiabeg8aY9aadaWgaaWc baWdbiaadUgaa8aabeaak8qacaWG1bWdamaaDaaaleaapeGaam4Aaa WdaeaapeGaam4CaiaadYgacaWGPbGaamiCaaaaaaa@5BC7@
u k = u m + u k drift MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaabUgaa8aabeaak8qacqGH9aqpcaqG 1bWdamaaBaaaleaapeGaaeyBaaWdaeqaaOWdbiabgUcaRiaadwhapa Waa0baaSqaa8qacaWGRbaapaqaa8qacaWGKbGaamOCaiaadMgacaWG MbGaamiDaaaaaaa@43B4@