Impingement from a Single Hole

This correlation is for a single jet from one round hole impinging on a flat surface. The correlation has separate equations for gas and liquid jets into a stagnant gas environment.
Type
Impingement Nu
Subtype
Single Jet Impingement
Table 1. Inputs List
Index UI Name (.flo label) Description
1 Nozzle Element

(NZL_ELM)

ID for the flow element that represents the jet flow through the hole.

No AUTO option. An element must always be supplied.

2 Chamber for Tjet

(TJET_CH)

The fluid chamber containing the temperature to be used in the heat flux calculation. This impingement correlation was derived using the pre-impingement air temperature.

If AUTO, the upstream chamber for NZL_ELM is used.

3 Fluid Type

(FL_CORR)

The phase of jet’s fluid: liquid or gas.

Liquid: Liquid jet into gas environment.

Gas: Gas jet into gas environment.

If AUTO, the fluid type is automatically found using the fluid in the NZL_ELM.

4 Nozzle Diameter

(NZL_DIA)

Diameter of the hole forming the impinging jet.

If AUTO, the diameter from the NZL_ELM is used. The NZL _ELM must be an element type that has a diameter input (orifice or tube).

5 Target Plate Radius

(PLATE_RAD)

The radius of the impinged surface.

If AUTO, the surface area of the convector is used assuming a circular impinged surface.

6 Distance to Plate Surface

(DIST_TO_TARG)

The distance from the impingement hole exit to the impinged surface. Not needed for liquid correlation.

No AUTO option.

7 HTC Multiplier

(HTC_MULT)

A constant multiplier to scale the value of heat transfer coefficient obtained from the correlation.

Formulation for a Gas Jet

The correlation for a gas jet uses a Nusselt number equation by Martin (reference 1) that can also be found in Incropera (reference 2). The HTC is the average over the impinged surface.

Equation 7.75 from Reference 2:

N u = G 2 R e 0.5 1 + 0.005 R e 0.55 0.5 P r 0.42 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaadEeadaWadaWdaeaapeGaaGOmaiaa dkfacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGynaaaakm aabmaapaqaa8qacaaIXaGaey4kaSIaaGimaiaac6cacaaIWaGaaGim aiaaiwdacaWGsbGaamyza8aadaahaaWcbeqaa8qacaaIWaGaaiOlai aaiwdacaaI1aaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa icdacaGGUaGaaGynaaaaaOGaay5waiaaw2faaiaadcfacaWGYbWdam aaCaaaleqabaWdbiaaicdacaGGUaGaaGinaiaaikdaaaaaaa@5426@

Where:

G = 2 * A r *   1 2.2 * A r 1 + 0.2 A r * H D h 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaeyypa0JaaGOmaiaacQcadaGcaaWdaeaapeGaamyqa8aa daWgaaWcbaWdbiaadkhaa8aabeaaa8qabeaakiaacQcacaGGGcWaaS aaa8aabaWdbiaaigdacqGHsislcaaIYaGaaiOlaiaaikdacaGGQaWa aOaaa8aabaWdbiaadgeapaWaaSbaaSqaa8qacaWGYbaapaqabaaape qabaaak8aabaWdbiaaigdacqGHRaWkcaaIWaGaaiOlaiaaikdadaGc aaWdaeaapeGaamyqa8aadaWgaaWcbaWdbiaadkhaa8aabeaaa8qabe aakiaacQcadaqadaWdaeaapeWaaSGaa8aabaWdbiaadIeaa8aabaWd biaadseapaWaaSbaaSqaa8qacaWGObaapaqabaaaaOWdbiabgkHiTi aaiAdaaiaawIcacaGLPaaaaaaaaa@521F@
A r = D h 2 4 r 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbWdamaaBaaaleaapeGaamOCaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaWGebWdamaaDaaaleaapeGaamiAaaWdaeaapeGaaG OmaaaaaOWdaeaapeGaaGinaiaadkhapaWaaWbaaSqabeaapeGaaGOm aaaaaaaaaa@3F3D@

Reynolds number:

R e = m   ˙ i m p D h A r e a   μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyzaiabg2da9maalaaapaqaamaaxacabaWdbiaad2ga caGGGcaal8aabeqaa8qacaGGzlaaaOWdamaaBaaaleaapeGaamyAai aad2gacaWGWbaapaqabaGcpeGaamira8aadaWgaaWcbaWdbiaadIga a8aabeaaaOqaa8qacaWGbbGaamOCaiaadwgacaWGHbGaaiiOaiabeY 7aTbaaaaa@48CB@
D h = n o z z l e   d i a m e t e r ,         r = t a r g e t   p l a t e   r a d i u s ,       H = d i s t a n c e   t o   p l a t e   s u r f a c e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaa d6gacaWGVbGaamOEaiaadQhacaWGSbGaamyzaiaacckacaWGKbGaam yAaiaadggacaWGTbGaamyzaiaadshacaWGLbGaamOCaiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaamOCaiabg2da9iaadshacaWGHbGaam OCaiaadEgacaWGLbGaamiDaiaacckacaWGWbGaamiBaiaadggacaWG 0bGaamyzaiaacckacaWGYbGaamyyaiaadsgacaWGPbGaamyDaiaado hacaGGSaGaaiiOaiaacckacaGGGcGaamisaiabg2da9iaadsgacaWG PbGaam4CaiaadshacaWGHbGaamOBaiaadogacaWGLbGaaiiOaiaads hacaWGVbGaaiiOaiaadchacaWGSbGaamyyaiaadshacaWGLbGaaiiO aiaadohacaWG1bGaamOCaiaadAgacaWGHbGaam4yaiaadwgaaaa@7F10@
H T C = N u * k D h   w h e r e   k = f l u i d   c o n d u c t i v i t y   a t   f i l m   t e m p e r a t u r e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaaiiOaiaadEhacaWGObGaamyzaiaadkhacaWG LbGaaiiOaiaadUgacqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaam izaiaacckacaWGJbGaam4Baiaad6gacaWGKbGaamyDaiaadogacaWG 0bGaamyAaiaadAhacaWGPbGaamiDaiaadMhacaGGGcGaamyyaiaads hacaGGGcGaamOzaiaadMgacaWGSbGaamyBaiaacckacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYb Gaamyzaaaa@6CFB@

Reference ranges:

2 H D h 12     ,                   2000 R e 400 , 000     ,     0.004 A r 0.04 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaeyizIm6aaSaaa8aabaWdbiaadIeaa8aabaWdbiaadsea paWaaSbaaSqaa8qacaWGObaapaqabaaaaOWdbiabgsMiJkaaigdaca aIYaGaaiiOaiaacckacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaGOmaiaaicdacaaIWaGaaG imaiabgsMiJkaadkfacaWGLbGaeyizImQaaGinaiaaicdacaaIWaGa aiilaiaaicdacaaIWaGaaGimaiaacckacaGGGcGaaiilaiaacckaca GGGcGaaGimaiaac6cacaaIWaGaaGimaiaaisdacqGHKjYOcaWGbbWd amaaBaaaleaapeGaamOCaaWdaeqaaOWdbiabgsMiJkaaicdacaGGUa GaaGimaiaaisdaaaa@6AB4@

Formulation for a Liquid Jet

The correlation for a liquid jet into a gas environment uses a Nusselt number equation by Womac (reference 3). The correlation was developed for a square target with side length (l). The HTC is the average over the impinged surface.

Equation 15 from reference 3:

N u = C 1 R e D h m l D h A r + C 2 R e L n l L 1 A r P r 0.4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9maadmaapaqaa8qacaWGdbWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiaadkfacaWGLbWdamaaDaaaleaape GaamiraiaadIgaa8aabaWdbiaad2gaaaGcdaWcaaWdaeaapeGaamiB aaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadIgaa8aabeaaaaGcpe Gaamyqa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGHRaWkcaWG dbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadkfacaWGLbWdam aaDaaaleaapeGaamitaaWdaeaapeGaamOBaaaakmaalaaapaqaa8qa caWGSbaapaqaa8qacaWGmbaaamaabmaapaqaa8qacaaIXaGaeyOeI0 Iaamyqa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaOWdbiaawIcacaGL PaaaaiaawUfacaGLDbaacaWGqbGaamOCa8aadaahaaWcbeqaa8qaca aIWaGaaiOlaiaaisdaaaaaaa@5A0E@

Where:

C 1 = 0.516 ,   C 2 = 0.491 ,   m = 0.5 ,   n = .532 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaGynaiaaigdacaaI2aGaaiilaiaacckacaWGdbWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaicdacaGGUaGa aGinaiaaiMdacaaIXaGaaiilaiaacckacaWGTbGaeyypa0JaaGimai aac6cacaaI1aGaaiilaiaacckacaWGUbGaeyypa0JaaiOlaiaaiwda caaIZaGaaGOmaaaa@51DE@
L = 0.5 2 l D h + 0.5 l D h 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbGaeyypa0ZaaSaaa8aabaWdbiaaicdacaGGUaGaaGynamaa bmaapaqaa8qadaGcaaWdaeaapeGaaGOmaaWcbeaakiaadYgacqGHsi slcaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaaGcpeGaayjkaiaa wMcaaiabgUcaRiaaicdacaGGUaGaaGynamaabmaapaqaa8qacaWGSb GaeyOeI0Iaamira8aadaWgaaWcbaWdbiaadIgaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbiaaikdaaaaaaa@4A8D@
A r = π D h 2 4 l 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbWdamaaBaaaleaapeGaamOCaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacqaHapaCcaWGebWdamaaDaaaleaapeGaamiAaaWdae aapeGaaGOmaaaaaOWdaeaapeGaaGinaiaadYgapaWaaWbaaSqabeaa peGaaGOmaaaaaaaaaa@40F4@

Relate target plate radius to square target edge length:

l = 4 r 2 + 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGSbGaeyypa0ZaaSaaa8aabaWdbiaaisdacaWGYbaapaqaa8qa daGcaaWdaeaapeGaaGOmaaWcbeaakiabgUcaRiaaigdaaaaaaa@3CAB@

Reynolds number:

R e D h = m   ˙ i m p D h A r e a   μ     R e L = m   ˙ i m p L A r e a   μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadseacaWGObaapaqabaGc peGaeyypa0ZaaSaaa8aabaWaaCbiaeaapeGaamyBaiaacckaaSWdae qabaWdbiaacMTaaaGcpaWaaSbaaSqaa8qacaWGPbGaamyBaiaadcha a8aabeaak8qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaaGcba WdbiaadgeacaWGYbGaamyzaiaadggacaGGGcGaeqiVd0gaaiaaccka caGGGcGaamOuaiaadwgapaWaaSbaaSqaa8qacaWGmbaapaqabaGcpe Gaeyypa0ZaaSaaa8aabaWaaCbiaeaapeGaamyBaiaacckaaSWdaeqa baWdbiaacMTaaaGcpaWaaSbaaSqaa8qacaWGPbGaamyBaiaadchaa8 aabeaak8qacaWGmbaapaqaa8qacaWGbbGaamOCaiaadwgacaWGHbGa aiiOaiabeY7aTbaaaaa@5FFF@
D h = n o z z l e   d i a m e t e r ,         r = t a r g e t   p l a t e   r a d i u s ,       H = d i s t a n c e   t o   p l a t e   s u r f a c e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaa d6gacaWGVbGaamOEaiaadQhacaWGSbGaamyzaiaacckacaWGKbGaam yAaiaadggacaWGTbGaamyzaiaadshacaWGLbGaamOCaiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaamOCaiabg2da9iaadshacaWGHbGaam OCaiaadEgacaWGLbGaamiDaiaacckacaWGWbGaamiBaiaadggacaWG 0bGaamyzaiaacckacaWGYbGaamyyaiaadsgacaWGPbGaamyDaiaado hacaGGSaGaaiiOaiaacckacaGGGcGaamisaiabg2da9iaadsgacaWG PbGaam4CaiaadshacaWGHbGaamOBaiaadogacaWGLbGaaiiOaiaads hacaWGVbGaaiiOaiaadchacaWGSbGaamyyaiaadshacaWGLbGaaiiO aiaadohacaWG1bGaamOCaiaadAgacaWGHbGaam4yaiaadwgaaaa@7F10@
H T C = N u * k D h   w h e r e   k = f l u i d   c o n d u c t i v i t y   a t   f i l m   t e m p e r a t u r e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaaiiOaiaadEhacaWGObGaamyzaiaadkhacaWG LbGaaiiOaiaadUgacqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaam izaiaacckacaWGJbGaam4Baiaad6gacaWGKbGaamyDaiaadogacaWG 0bGaamyAaiaadAhacaWGPbGaamiDaiaadMhacaGGGcGaamyyaiaads hacaGGGcGaamOzaiaadMgacaWGSbGaamyBaiaacckacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYb Gaamyzaaaa@6CFB@

Reference ranges:

.67 L D h 4.14     ,                   1000 R e D h 51 , 000     ,         670 R e L 128 , 000     ,     0.004 A r 0.04 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGUaGaaGOnaiaaiEdacqGHKjYOdaWcaaWdaeaapeGaamitaaWd aeaapeGaamira8aadaWgaaWcbaWdbiaadIgaa8aabeaaaaGcpeGaey izImQaaGinaiaac6cacaaIXaGaaGinaiaacckacaGGGcGaaiilaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaaigdacaaIWaGaaGimaiaaicdacqGHKjYOcaWGsbGaamyza8aa daWgaaWcbaWdbiaadseacaWGObaapaqabaGcpeGaeyizImQaaGynai aaigdacaGGSaGaaGimaiaaicdacaaIWaGaaiiOaiaacckacaGGSaGa aiiOaiaacckacaGGGcGaaiiOaiaaiAdacaaI3aGaaGimaiabgsMiJk aadkfacaWGLbWdamaaBaaaleaapeGaamitaaWdaeqaaOWdbiabgsMi JkaaigdacaaIYaGaaGioaiaacYcacaaIWaGaaGimaiaaicdacaGGGc GaaiiOaiaacYcacaGGGcGaaiiOaiaaicdacaGGUaGaaGimaiaaicda caaI0aGaeyizImQaamyqa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8 qacqGHKjYOcaaIWaGaaiOlaiaaicdacaaI0aaaaa@845C@

Table 2. Output List
Index .flo label Description
1 TNET Thermal network ID which has the convector where this correlation is used.
2 CONV_ID Convector ID which is using this correlation.
3 NZL_ELM Flow element that represents the jet flow through the hole.
4 FLUID GAS or LIQUID.
5 JET_VEL The jet velocity exiting the NZL_ELM.
6 TJET_CH The fluid chamber containing the temperature to be used in the heat flux calculation.
7 PLATE_RAD/DIA Target plate radius/nozzle diameter.
8 H/DIA Distance to plate surface/nozzle diameter.
9 RE Reynolds number based on the nozzle diameter.
10 HTC Calculated Heat Transfer Coefficient.

Heat Transfer Correlation References

  1. Martin, H., “Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces,” in J. P. Hartnett and T. F. Irvine, Jr., Eds., Advances in Heat Transfer, Vol. 13, Academic Press, New York, 1977.
  2. Incropera, F. and Dewitt, D. Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, 2006.
  3. Womac, D. J., S. Ramadhyani, and F. P. Incropera. "Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets", ASME Journal of Heat Transfer, 106-115, 1993.