Rotating Cavity Duct Flow

Description

This HTC correlation can be used in a location where there is rotational and axial (or radial) velocity. The correlation calculates an HTC for the rotational direction and the axial (or radial) direction and blends them using the third power. The correlation uses the Dittus-Boelter Nu equation for duct flow. Therefore, the rotational direction is treated like a duct and the axial (or radial) direction is also treated like a duct.

The correlation can be applied to a convector, cavity surface, or lab seal element. The convector is the only application where the inputs listed below are used. The cavity surface and the lab seal element applications automatically determine the inputs from the cavity or the lab seal geometry and flow conditions.
Figure 1.


Type
BI_ROT_CAV_NU
Subtype
ROT_CAV_DUCT_FLOW
Table 1. Input List
Index UI Name

(.flo label)

Description
1 Velocity Method

(VEL_TYPE)

Method to get a velocity for the Reynolds Number.
  1. All from the Swirl Chamber.
  2. Swirl Chamber and Flow Element.

A thru flow element must be defined to use option 2.

2 Swirl Chamber

(SWRL_CHM)

ID for the flow chamber that will be used for the velocity.

If AUTO, the flow chamber ID that is attached to the convector will be used.

3 Swirl Hydraulic Diameter

(SWRL_HYD_DIA)

The hydraulic diameter used for the rotational direction.

If AUTO, the SWRL_CHM must be associated with a cavity. The hydraulic diameter of the cavity will be automatically calculated using the cavity surface definition.

4 Thru Flow Element

(THRU_FLOW_ELM)

An element used for the axial (or radial) velocity and geometry calculation.

If AUTO, the element upstream of the SWRL_CHM will be used.

5 Thru Hydraulic Diameter

(THRU_HYD_DIA)

The hydraulic diameter used for the axial (or radial) direction.

If AUTO, the diameter of the THRU_FLOW_ELM is used.

7 Laminar-to-Transition Re

(RE_LAM)

Reynolds number where the laminar regime of the flow ends and the transitional regime starts.

If AUTO, the global transition Re is used (default=2185).

8 Transition-to-Turbulent Re

(RE_TURB)

Reynolds number where the transitional regime of flow ends and the fully turbulent regime starts.

If AUTO, the global transition Re is used (default=2415).

9 HTC Multiplier

(HTC_MULT)

A constant multiplier to scale the value of the heat transfer coefficient obtained from the correlation.
10 Free Convection Nu

(FREE_HTC)

The equation to use for the free convection blending.
  1. None (do not calculate free convection HTC).
  2. McAdams Vertical Plate.
  3. Horizontal Plate.
  4. Churchill-Chu Horizontal Cylinder

If AUTO, FREE_HTC=2

11 Free Mixing Sign

(FREE_ASSIST)

The sign of the free and forced HTC blending.
  1. Assist (positive).
  2. Oppose (negative).

If AUTO, FREE_ASSIST=1.

12 Free Length Scale

(FREE_LEN)

The length scale for the free convection HTC calculation.

If AUTO, FREE_LEN = LENGTH.

13 Horizontal Free Surface Dir

(FREE_SURF_DIR)

Direction of the horizontal plate that is used if FREE_HTC=3.
  1. Up or radially out.
  2. Down or radially in.

Formulation

This correlation uses a Nusselt number for duct flow that can be found in section 8.5 of reference 1 and other textbooks.

For the rotational (or swirl) direction:

R e rot = ρ*  V rel_rot *D h rot μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadkhacaWGVbGaamiDaaWd aeqaaOWdbiabg2da9maalaaapaqaa8qacqaHbpGCcaGGQaGaaiiOai aadAfapaWaaSbaaSqaa8qacaWGYbGaamyzaiaadYgacaGGFbGaamOC aiaad+gacaWG0baapaqabaGcpeGaaiOkaiaadseacaWGObWdamaaBa aaleaapeGaamOCaiaad+gacaWG0baapaqabaaakeaapeGaeqiVd0ga aaaa@4F52@

For the thru flow (axial or radial) direction:

For VEL_TYPE=1,

R e thru = ρ *  V thru  * D h thru μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadshacaWGObGaamOCaiaa dwhaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaeqyWdiNaaiiOai aacQcacaGGGcGaamOva8aadaWgaaWcbaWdbiaadshacaWGObGaamOC aiaadwhaa8aabeaak8qacaGGGcGaaiOkaiaacckacaWGebGaamiAa8 aadaWgaaWcbaWdbiaadshacaWGObGaamOCaiaadwhaa8aabeaaaOqa a8qacqaH8oqBaaaaaa@51E2@

For VEL_TYPE=2,

R e thru = m  ˙ * D h thru Area * μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadshacaWGObGaamOCaiaa dwhaa8aabeaak8qacqGH9aqpdaWcaaWdaeaadaWfGaqaa8qacaWGTb GaaiiOaaWcpaqabeaapeGaaiy2caaakiaacQcacaGGGcGaamiraiaa dIgapaWaaSbaaSqaa8qacaWG0bGaamiAaiaadkhacaWG1baapaqaba aakeaapeGaamyqaiaadkhacaWGLbGaamyyaiaacckacaGGQaGaaiiO aiabeY7aTbaaaaa@514C@

Calculate a Nusselt number, Nu, for the rotational and thru flow directions using these equations.

For Re > RE_LAM

  • Use Dittus Boelter equations for the HTC

    To heat fluid:

    N u t u r b u l e n t = .024 *   R e .8 * P r .4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDa8aadaWgaaWcbaWdbiaadshacaWG1bGaamOCaiaa dkgacaWG1bGaamiBaiaadwgacaWGUbGaamiDaaWdaeqaaOWdbiabg2 da9iaac6cacaaIWaGaaGOmaiaaisdacaGGQaGaaiiOaiaadkfacaWG LbWdamaaCaaaleqabaWdbiaac6cacaaI4aaaaOGaaiOkaiaadcfaca WGYbWdamaaCaaaleqabaWdbiaac6cacaaI0aaaaaaa@4E6A@

    To cool fluid:

    N u t u r b u l e n t = .026 *   R e .8 * P r .4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDa8aadaWgaaWcbaWdbiaadshacaWG1bGaamOCaiaa dkgacaWG1bGaamiBaiaadwgacaWGUbGaamiDaaWdaeqaaOWdbiabg2 da9iaac6cacaaIWaGaaGOmaiaaiAdacaGGQaGaaiiOaiaadkfacaWG LbWdamaaCaaaleqabaWdbiaac6cacaaI4aaaaOGaaiOkaiaadcfaca WGYbWdamaaCaaaleqabaWdbiaac6cacaaI0aaaaaaa@4E6C@

For Re < RE_TURB
N u l a m i n a r = 3.66 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDa8aadaWgaaWcbaWdbiaadYgacaWGHbGaamyBaiaa dMgacaWGUbGaamyyaiaadkhaa8aabeaak8qacqGH9aqpcaaIZaGaai OlaiaaiAdacaaI2aaaaa@42D5@
  • Use a liner blend between laminar and turbulent Nu if Re is in the transition range.

Calculate a Heat Transfer Coefficient, HTC, for the rotational and thru flow directions using these equations.

H T C r o t = N u r o t * k D h r o t                                                     H T C t h r u = N u t h r u * k D h t h r u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeapaWaaSbaaSqaa8qacaWGYbGaam4Baiaa dshaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaamOtaiaadwhapa WaaSbaaSqaa8qacaWGYbGaam4Baiaadshaa8aabeaak8qacaGGQaGa am4AaaWdaeaapeGaamiraiaadIgapaWaaSbaaSqaa8qacaWGYbGaam 4Baiaadshaa8aabeaaaaGcpeGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGibGaamivaiaado eapaWaaSbaaSqaa8qacaWG0bGaamiAaiaadkhacaWG1baapaqabaGc peGaeyypa0ZaaSaaa8aabaWdbiaad6eacaWG1bWdamaaBaaaleaape GaamiDaiaadIgacaWGYbGaamyDaaWdaeqaaOWdbiaacQcacaWGRbaa paqaa8qacaWGebGaamiAa8aadaWgaaWcbaWdbiaadshacaWGObGaam OCaiaadwhaa8aabeaaaaaaaa@7C55@

Final HTC
H T C = H T C r o t 3 + H T C t h r u 3 .3333 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaqadaWdaeaapeGaamisaiaa dsfacaWGdbWdamaaDaaaleaapeGaamOCaiaad+gacaWG0baapaqaa8 qacaaIZaaaaOGaey4kaSIaamisaiaadsfacaWGdbWdamaaDaaaleaa peGaamiDaiaadIgacaWGYbGaamyDaaWdaeaapeGaaG4maaaaaOGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacaGGUaGaaG4maiaaiodacaaI ZaGaaG4maaaaaaa@4E03@
D h = h y d r a u l i c   d i a m e t e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebGaamiAaiabg2da9iaadIgacaWG5bGaamizaiaadkhacaWG HbGaamyDaiaadYgacaWGPbGaam4yaiaacckacaWGKbGaamyAaiaadg gacaWGTbGaamyzaiaadshacaWGLbGaamOCaaaa@49DD@
V = f l u i d     v e l o c i t y   r e l a t i v e   t o   t h e   s u r f a c e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbGaeyypa0JaamOzaiaadYgacaWG1bGaamyAaiaadsgacaGG GcGaaiiOaiaadAhacaWGLbGaamiBaiaad+gacaWGJbGaamyAaiaads hacaWG5bGaaiiOaiaadkhacaWGLbGaamiBaiaadggacaWG0bGaamyA aiaadAhacaWGLbGaaiiOaiaadshacaWGVbGaaiiOaiaadshacaWGOb GaamyzaiaacckacaWGZbGaamyDaiaadkhacaWGMbGaamyyaiaadoga caWGLbaaaa@5DE2@
ρ = f l u i d   f i l m   d e n s i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCcqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGMbGaamyAaiaadYgacaWGTbGaaiiOaiaadsgacaWGLbGaam OBaiaadohacaWGPbGaamiDaiaadMhaaaa@4A32@
μ = f l u i d   f i l m   v i s c o s i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBcqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGMbGaamyAaiaadYgacaWGTbGaaiiOaiaadAhacaWGPbGaam 4CaiaadogacaWGVbGaam4CaiaadMgacaWG0bGaamyEaaaa@4C1F@
P r = f l u i d   P r a n d t l   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamOCaiabg2da9iaadAgacaWGSbGaamyDaiaadMgacaWG KbGaaiiOaiaadcfacaWGYbGaamyyaiaad6gacaWGKbGaamiDaiaadY gacaGGGcGaamOtaiaadwhacaWGTbGaamOyaiaadwgacaWGYbaaaa@4BDE@
m ˙ = m a s s   f l o w   r a t e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iaad2gacaWGHbGaam4Caiaadoha caGGGcGaamOzaiaadYgacaWGVbGaam4DaiaacckacaWGYbGaamyyai aadshacaWGLbaaaa@45D4@
Table 2. Output List
Index .res label Description
1 TNET Thermal network ID that has the convector where this correlation is used.
2 CONV_ID Convector ID which is using this correlation.
3 SWIRL Fluid swirl velocity/solid surface rotational velocity.
4 SWRL_VEL Fluid swirl velocity relative to the surface.
5 SWRL_DH The hydraulic diameter used for the rotational direction.
6 SWRL_RE Reynolds number for the rotational (swirl) direction.
7 SWRL_HTC Heat Transfer Coefficient for the rotational (swirl) direction.
8 THRU_VEL Fluid axial (or radial) velocity.
9 THRU_DH The hydraulic diameter for the axial (or radial) direction.
10 THRU_RE Reynolds number for the axial (or radial) direction.
11 THRU_HTC Heat Transfer Coefficient for the axial (or radial) direction.
12 TOTAL_HTC Final Heat Transfer Coefficient,

Heat Transfer Correlation References

  1. Incropera, F. and Dewitt, D. Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, 2006.