Rotor Disk Farthing

Description

This HTC correlation can be used on the rotating disk surfaces of a cavity with bore flow that is typically found in gas turbine compressors. The correlation is based on the paper by P.R. Farthing, reference 1.
Figure 1.


The correlation can be applied to a convector resistor.
Type
BI_ROT_CAV_NU
Subtype
ROT_DISK_FARTHG
Table 1. Input List
Index UI Name

(.flo label)

Description
1 Local Disk Radius

(LOCAL_RAD)

The local radius for the HTC calculation.

If AUTO, the radius of the flow chamber attached to the convector will be used.

2 Disk Outer Radius (OUTER_RAD) The outer radius of the disk. Also called the shroud radius in reference 1.
3 Disk Bore Radius

(BORE_RAD)

The inner radius of the disk. Also called the bore radius in reference 1.
4 Bore Temperature Chamber

(BORE_T_CHM)

A flow chamber that contains the temperature of the bore flow entering the rotor-rotor disk cavity.

If AUTO, the chamber upstream of the Bore Flow Element will be used.

If BORE_T_CHM=0, use the temperature of the fluid chamber attached to the convector.

5 Bore Flow Element

(BORE_FLOW_ELM)

An element containing the flow rate going through the bore.
6 Tube Rotation Index

(ROTOR_IDX)

The index of the rotor shaft containing the RPM for the disk surface. The speed for this rotor shaft is set in the Run > Reference Conditions tab.

If AUTO, the rotation assigned to the thermal node attached to the convector will be used.

7 HTC Multiplier

(HTC_MULT)

A constant multiplier to scale the value of the heat transfer coefficient obtained from the correlation.
8 Free Convection Nu

(FREE_HTC)

The equation to use for free convection blending.

None (do not calculate the free convection HTC).

McAdams Vertical Plate.

Horizontal Plate.

Churchill-Chu Horizontal Cylinder.

If AUTO, FREE_HTC=2.

9 Free Mixing Sign

(FREE_ASSIST)

The sign of the free and forced HTC blending.

Assist (positive).

Oppose (negative).

If AUTO, FREE_ASSIST=1.

10 Free Length Scale

(FREE_LEN)

The length scale for the free convection HTC calculation.

If AUTO, FREE_LEN = LENGTH.

11 Horizontal Free Surface Dir

(FREE_SURF_DIR)

Direction of the horizontal plate that is used if FREE_HTC=3.

Up or radially out.

Down or radially in.

Formulation

This correlation uses a Nusselt number found in reference 1. The heat flux uses the fluid temperature from the bore (BORE_T_CHM) and not the fluid temperature of the chamber attached to the convector.

R e b o r e = m   ˙ b o r e * 2 *   R a d i u s b o r e A r e a b o r e   *   μ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadkgacaWGVbGaamOCaiaa dwgaa8aabeaak8qacqGH9aqpdaWcaaWdaeaadaWfGaqaa8qacaWGTb GaaiiOaaWcpaqabeaapeGaaiy2caaak8aadaWgaaWcbaWdbiaadkga caWGVbGaamOCaiaadwgaa8aabeaak8qacaGGQaGaaGOmaiaacQcaca GGGcGaamOuaiaadggacaWGKbGaamyAaiaadwhacaWGZbWdamaaBaaa leaapeGaamOyaiaad+gacaWGYbGaamyzaaWdaeqaaaGcbaWdbiaadg eacaWGYbGaamyzaiaadggapaWaaSbaaSqaa8qacaWGIbGaam4Baiaa dkhacaWGLbaapaqabaGcpeGaaiiOaiaacQcacaGGGcGaeqiVd0gaaa aa@5EB0@

Reference Re limits,

20 , 000 <   R e b o r e < 160 , 000 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIYaGaaGimaiaacYcacaaIWaGaaGimaiaaicdacqGH8aapcaGG GcGaamOuaiaadwgapaWaaSbaaSqaa8qacaWGIbGaam4Baiaadkhaca WGLbaapaqabaGcpeGaeyipaWJaaGymaiaaiAdacaaIWaGaaiilaiaa icdacaaIWaGaaGimaaaa@489C@
Gr= ω 2 * Radiu s local 4 * ρ μ 2 *β*abs T wall T fluid MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaamOCaiabg2da9iabeM8a39aadaahaaWcbeqaa8qacaaI YaaaaOGaaiOkaiaacckacaWGsbGaamyyaiaadsgacaWGPbGaamyDai aadohapaWaaSbaaSqaa8qacaWGSbGaam4BaiaadogacaWGHbGaamiB aaWdaeqaaOWaaWbaaSqabeaapeGaaGinaaaakiaacQcadaqadaWdae aapeWaaSaaa8aabaWdbiabeg8aYbWdaeaapeGaeqiVd0gaaaGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiOkaiabek7aIj aacQcacaWGHbGaamOyaiaadohadaqadaWdaeaapeGaamiva8aadaWg aaWcbaWdbiaadEhacaWGHbGaamiBaiaadYgaa8aabeaak8qacqGHsi slcaWGubWdamaaBaaaleaapeGaamOzaiaadYgacaWG1bGaamyAaiaa dsgaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@63B3@

Equation 7 from reference 1.

N u = .0054 * R e b o r e 0.3 * G r .25 *   R a d i u s o u t e r R a d i u s l o c a l 1 .25 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaac6cacaaIWaGaaGimaiaaiwdacaaI 0aGaaiOkaiaadkfacaWGLbWdamaaBaaaleaapeGaamOyaiaad+gaca WGYbGaamyzaaWdaeqaaOWaaWbaaSqabeaapeGaaGimaiaac6cacaaI ZaaaaOGaaiOkaiaadEeacaWGYbWdamaaCaaaleqabaWdbiaac6caca aIYaGaaGynaaaakiaacQcacaGGGcWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGsbGaamyyaiaadsgacaWGPbGaamyDaiaadohapaWaaSbaaS qaa8qacaWGVbGaamyDaiaadshacaWGLbGaamOCaaWdaeqaaaGcbaWd biaadkfacaWGHbGaamizaiaadMgacaWG1bGaam4Ca8aadaWgaaWcba WdbiaadYgacaWGVbGaam4yaiaadggacaWGSbaapaqabaaaaOWdbiab gkHiTiaaigdaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaiOlai aaikdacaaI1aaaaaaa@67AB@

HTC and heat flux.
H T C = N u * k R a d i u s l o c a l   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaamOuaiaadggacaWGKbGaamyAai aadwhacaWGZbWdamaaBaaaleaapeGaamiBaiaad+gacaWGJbGaamyy aiaadYgaa8aabeaaaaGcpeGaaiiOaaaa@4907@
q =   H T C * T w a l l T f l u i d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbGaeyypa0JaaiiOaiaadIeacaWGubGaam4qaiaacQcadaqa daWdaeaapeGaamiva8aadaWgaaWcbaWdbiaadEhacaWGHbGaamiBai aadYgaa8aabeaak8qacqGHsislcaWGubWdamaaBaaaleaapeGaamOz aiaadYgacaWG1bGaamyAaiaadsgaa8aabeaaaOWdbiaawIcacaGLPa aaaaa@49F4@
T w a l l = d i s k   s u r f a c e   t e m p e r a t u r e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaam4DaiaadggacaWGSbGaamiBaaWd aeqaaOWdbiabg2da9iaadsgacaWGPbGaam4CaiaadUgacaGGGcGaam 4CaiaadwhacaWGYbGaamOzaiaadggacaWGJbGaamyzaiaacckacaWG 0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadw hacaWGYbGaamyzaaaa@5327@
T f l u i d = f l u i d   t e m p e r a t u r e   f r o m   BORE _ T _ CHM   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamOzaiaadYgacaWG1bGaamyAaiaa dsgaa8aabeaak8qacqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaam izaiaacckacaWG0bGaamyzaiaad2gacaWGWbGaamyzaiaadkhacaWG HbGaamiDaiaadwhacaWGYbGaamyzaiaacckacaWGMbGaamOCaiaad+ gacaWGTbGaaiiOaiaabkeacaqGpbGaaeOuaiaabweacaGGFbGaaeiv aiaac+facaqGdbGaaeisaiaab2eacaGGGcaaaa@5CB4@
R e b o r e = R e y n o l d s   n u m b e r   f r o m   b o r e   f l o w MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadkgacaWGVbGaamOCaiaa dwgaa8aabeaak8qacqGH9aqpcaWGsbGaamyzaiaadMhacaWGUbGaam 4BaiaadYgacaWGKbGaam4CaiaacckacaWGUbGaamyDaiaad2gacaWG IbGaamyzaiaadkhacaGGGcGaamOzaiaadkhacaWGVbGaamyBaiaacc kacaWGIbGaam4BaiaadkhacaWGLbGaaiiOaiaadAgacaWGSbGaam4B aiaadEhaaaa@5A0E@
G r = G r a s h o f   n u m b e r   u s i n g   c e n t r i p e t a l   a c c e l e r a t i o n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaamOCaiabg2da9iaadEeacaWGYbGaamyyaiaadohacaWG ObGaam4BaiaadAgacaGGGcGaamOBaiaadwhacaWGTbGaamOyaiaadw gacaWGYbGaaiiOaiaadwhacaWGZbGaamyAaiaad6gacaWGNbGaaiiO aiaadogacaWGLbGaamOBaiaadshacaWGYbGaamyAaiaadchacaWGLb GaamiDaiaadggacaWGSbGaaiiOaiaadggacaWGJbGaam4yaiaadwga caWGSbGaamyzaiaadkhacaWGHbGaamiDaiaadMgacaWGVbGaamOBaa aa@63BC@
ρ = f l u i d   f i l m   d e n s i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCcqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGMbGaamyAaiaadYgacaWGTbGaaiiOaiaadsgacaWGLbGaam OBaiaadohacaWGPbGaamiDaiaadMhaaaa@4A32@
μ = f l u i d   f i l m   v i s c o s i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBcqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGMbGaamyAaiaadYgacaWGTbGaaiiOaiaadAhacaWGPbGaam 4CaiaadogacaWGVbGaam4CaiaadMgacaWG0bGaamyEaaaa@4C1F@
P r = f l u i d   P r a n d t l   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamOCaiabg2da9iaadAgacaWGSbGaamyDaiaadMgacaWG KbGaaiiOaiaadcfacaWGYbGaamyyaiaad6gacaWGKbGaamiDaiaadY gacaGGGcGaamOtaiaadwhacaWGTbGaamOyaiaadwgacaWGYbaaaa@4BDE@
m   ˙ b o r e = m a s s   f l o w   r a t e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaqa aaaaaaaaWdbiaad2gacaGGGcaal8aabeqaa8qacaGGzlaaaOWdamaa BaaaleaapeGaamOyaiaad+gacaWGYbGaamyzaaWdaeqaaOWdbiabg2 da9iaad2gacaWGHbGaam4CaiaadohacaGGGcGaamOzaiaadYgacaWG VbGaam4DaiaacckacaWGYbGaamyyaiaadshacaWGLbaaaa@4CD1@
β = f l u i d   b u l k   c o m p r e s s i b i l i t y   f a c t o r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGycqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGIbGaamyDaiaadYgacaWGRbGaaiiOaiaadogacaWGVbGaam yBaiaadchacaWGYbGaamyzaiaadohacaWGZbGaamyAaiaadkgacaWG PbGaamiBaiaadMgacaWG0bGaamyEaiaacckacaWGMbGaamyyaiaado gacaWG0bGaam4Baiaadkhaaaa@5864@
ω = r o t a t i o n   i n   r a d i a n s / s e c o n d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHjpWDcqGH9aqpcaWGYbGaam4BaiaadshacaWGHbGaamiDaiaa dMgacaWGVbGaamOBaiaacckacaWGPbGaamOBaiaacckacaWGYbGaam yyaiaadsgacaWGPbGaamyyaiaad6gacaWGZbGaai4laiaadohacaWG LbGaam4yaiaad+gacaWGUbGaamizaaaa@517E@
Table 2. Output List
Index .res label Description
1 TNET Thermal network ID that has the convector where this correlation is used.
2 CONV_ID Convector ID which is using this correlation.
3 RPM Disk rotations per minute.
4 BORE_ELM Bore flow element.
5 FLOW Flow rate in the bore flow element.
6 BORE_RAD The inner radius of the disk.
7 LOCAL_RAD The local radius for the HTC calculation.
8 OUTER_RAD The outer radius of the disk.
9 RE_AX Reynolds number for the bore.
10 GR Grashof number.
11 NU Calculated Nusselt number.
12 HTC Calculated Heat Transfer Coefficient.

Heat Transfer Correlation References

  1. Farthing, P. R., Long, C. A., Owen, J. M., and Pincombe, J. R., “Rotating Cavity with Axial Throughflow of Cooling Air: Heat Transfer,” ASME J. Turbomach., 114(1), 1992, pp. 229–236.