Response Spectrum Analysis

Structural analysis method utilized to predict the maximum response of a structure subjected to dynamic loading, typically transient events such as earthquakes or blasts.

Response Spectrum Analysis (RSA) provides estimates of the maximum displacements, stresses, and forces experienced by the structure under such conditions. RSA combines predefined response spectra for specific dynamic loadings with the outcomes of a normal modal analysis. Unlike time-history analyses, RSA doesn't generate the time evolution of responses.

Response spectra illustrate the maximum response against the natural frequency of a single-degree-of-freedom (1-DOF) system under specified dynamic loads. These spectra facilitate the computation of maximum modal responses for each structural mode. Various combination methods, like the absolute sum (ABS), square root of sum of squares (SRSS), naval research laboratory (NRL) or complete quadratic combination (CQC), amalgamate these modal maxima to estimate the peak structural response.

Compared to traditional transient analysis methods, RSA offers a simpler and computationally efficient means of approximating peak responses. The primary computational demand lies in acquiring an adequate number of normal modes to accurately represent the entire frequency range of input excitation and resultant response. Typically, design specifications provide response spectra, enabling quick calculations of peak responses under different dynamic excitations. Consequently, RSA serves as a prevalent design tool, particularly in seismic analysis for buildings.

When performing RSA on a structure, selecting the appropriate modal combination method is crucial for obtaining accurate results. This method determines how the software consolidates the raw results from individual vibration modes (modal responses) into a single set of values for displacement, reactions, internal forces, and other parameters for each degree of freedom. These combined results serve as the basis for designing the structure, underscoring the significance of choosing the modal combination method carefully. The following section explores several modal combination methods commonly used in RSA.

Modal Combinations

Absolute sum (ABS)

The Absolute Sum modal combination method calculates the absolute value of the result (such as displacement or internal force) for each vibration mode and sums up these absolute values. This method assumes that all peak modal responses occur simultaneously, resulting in a conservative estimation. Consequently, it is not widely favoured in structural design applications due to its overly conservative nature.

The formula for calculating the peak value of the total response using the absolute sum method is:

Peak Response Total = Σ i R n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabw gacaqGHbGaae4AaiaabccacaqGsbGaaeyzaiaabohacaqGWbGaae4B aiaab6gacaqGZbGaaeyzaiaabccacaqGubGaae4BaiaabshacaqGHb GaaeiBaiabg2da9iabfo6atnaaBaaaleaacaWGPbaabeaakmaaemaa baGaamOuamaaBaaaleaacaWGUbaabeaaaOGaay5bSlaawIa7aaaa@4F94@
R n = A i n ψ i X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGUbaabeaakiabg2da9iaadgeadaWgaaWcbaGaamyAaiaa d6gaaeqaaOGaeqiYdK3aaSbaaSqaaiaadMgaaeqaaOGaamiwaaaa@3FA9@
Where,

R n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGUbaabeaaaaa@37ED@
Represents the transient response at a single degree of freedom from each vibration mode
A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36BD@
Eigen vector
ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@37C5@
Modal participation factor
X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36D4@
Input response spectrum
This straightforward formula sums up the absolute values of the responses from all modes, disregarding their signs.

Square root of sum of squares (SRSS)

The SRSS modal combination method calculates the square root of the sum of squares of the results for each vibration mode, offering an approximation of the peak of the total response. This method is particularly effective for structures with distinct natural frequencies. However, if the natural frequencies of the structure are closely spaced, SRSS may not yield accurate results and should be avoided.

Formally, the peak total response using the SRSS method can be expressed as:

Peak Response Total = Σ i R n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabw gacaqGHbGaae4AaiaabccacaqGsbGaaeyzaiaabohacaqGWbGaae4B aiaab6gacaqGZbGaaeyzaiaabccacaqGubGaae4BaiaabshacaqGHb GaaeiBaiabg2da9maakaaabaGaeu4Odm1aaSbaaSqaaiaadMgaaeqa aOGaamOuamaaDaaaleaacaWGUbaabaGaaGOmaaaaaeqaaaaa@4D35@
R n = A i n ψ i X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGUbaabeaakiabg2da9iaadgeadaWgaaWcbaGaamyAaiaa d6gaaeqaaOGaeqiYdK3aaSbaaSqaaiaadMgaaeqaaOGaamiwaaaa@3FA9@
Where,

R n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGUbaabeaaaaa@37ED@
Represents the transient response at a single degree of freedom from each vibration mode
A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36BD@
Eigen vector
ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@37C5@
Modal participation factor
X MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36D4@
Input response spectrum
This formula calculates the square root of the sum of the squares of the responses from all modes, providing an estimate of the peak total response.

Complete quadratic combination (CQC)

The CQC method indeed addresses the limitations of the SRSS method when combining modal responses in structures with closely spaced natural frequencies. The peak total response using the CQC method is obtained through the formula:

Peak Response Total = i Σ j R i ρ i j R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabw gacaqGHbGaae4AaiaabccacaqGsbGaaeyzaiaabohacaqGWbGaae4B aiaab6gacaqGZbGaaeyzaiaabccacaqGubGaae4BaiaabshacaqGHb GaaeiBaiabg2da9maakaaabaWaaabeaeaacqqHJoWudaWgaaWcbaGa amOAaaqabaGccaWGsbWaaSbaaSqaaiaadMgaaeqaaOGaeqyWdi3aaS baaSqaaiaadMgacaWGQbaabeaakiaadkfadaWgaaWcbaGaamOAaaqa baaabaGaamyAaaqab0GaeyyeIuoaaSqabaaaaa@5514@
Where,

R i R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGPbaabeaakiaadkfadaWgaaWcbaGaamOAaaqabaaaaa@39E4@
Peak modal responses for the i, j vibration modes, respectively
ρ i j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgacaWGQbaabeaaaaa@39C0@
Modal correlation coefficient for the two modes being combined at each summation step
The modal correlation coefficient ρ i j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgacaWGQbaabeaaaaa@39C0@ is calculated using the equation:
ρ i j = 8 ξ i ξ j ( ξ i + β j i ξ j ) β j i 1 5 ( 1 β j i 2 ) 2 + 4 ξ i ξ j β j i ( 1 + β j i 2 ) + 4 ( ξ i 2 + ξ j 2 ) β j i 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgacaWGQbaabeaakiabg2da9maalaaabaGaaGioamaa kaaabaGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaeqOVdG3aaSbaaS qaaiaadQgaaeqaaaqabaGccaGGOaGaeqOVdG3aaSbaaSqaaiaadMga aeqaaOGaey4kaSIaeqOSdi2aaSbaaSqaaiaadQgacaWGPbaabeaaki abe67a4naaBaaaleaacaWGQbaabeaakiaacMcacqaHYoGydaqhaaWc baGaamOAaiaadMgaaeaacaaIXaGaeyyXICTaaGynaaaaaOqaaiaacI cacaaIXaGaeyOeI0IaeqOSdi2aa0baaSqaaiaadQgacaWGPbaabaGa aGOmaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0a GaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaeqOVdG3aaSbaaSqaaiaa dQgaaeqaaOGaeqOSdi2aaSbaaSqaaiaadQgacaWGPbaabeaakiaacI cacaaIXaGaey4kaSIaeqOSdi2aa0baaSqaaiaadQgacaWGPbaabaGa aGOmaaaakiaacMcacqGHRaWkcaaI0aGaaiikaiabe67a4naaDaaale aacaWGPbaabaGaaGOmaaaakiabgUcaRiabe67a4naaDaaaleaacaWG QbaabaGaaGOmaaaakiaacMcacqaHYoGydaqhaaWcbaGaamOAaiaadM gaaeaacaaIYaaaaaaaaaa@7F32@
Where,
β j i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadQgacaWGPbaabeaaaaa@39A1@
Ratio between the natural frequencies of the i and j modes ( λ j / λ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadQgaaeqaaOGaai4laiabeU7aSnaaBaaaleaacaWGPbaa beaaaaa@3C51@ )
ξ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadMgaaeqaaaaa@38D4@ and ξ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaaaa@38D5@
Modal damping values of the two modes
This equation accounts for the relationship between the damping ratio, the natural frequencies of the modes, and their correlation, ensuring a more accurate estimation of the peak total response compared to the SRSS method.

Naval research laboratory (NRL)

The NRL modal combination method integrates aspects of both the square root of the sum of the squares (SRSS) and absolute sum (ABS) methods to achieve a balanced approach in response spectrum analysis. It adds the maximum peak modal response by ABS method and the rest of the modal contributions to the structures with responses calculated having distinct natural frequencies which is evaluated using SRSS method.

Formulation for the NRL modal combination method is as follows:

Peak Total Response= A ik Ψ i X + ji ( A jk Ψ j X) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabw gacaqGHbGaae4AaiaabccacaqGubGaae4BaiaabshacaqGHbGaaeiB aiaabccacaqGsbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqGZb Gaaeyzaiabg2da9maaemaabaGaamyqamaaBaaaleaacaWGPbGaam4A aaqabaaakiaawEa7caGLiWoadaabdaqaaiabfI6aznaaBaaaleaaca WGPbaabeaakiaadIfaaiaawEa7caGLiWoacqGHRaWkdaGcaaqaamaa qababaGaaiikaiaadgeadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaeu iQdK1aaSbaaSqaaiaadQgaaeqaaOGaamiwaiaacMcadaahaaWcbeqa aiaaikdaaaaabaGaamOAaiabgcMi5kaadMgaaeqaniabggHiLdaale qaaaaa@639F@