/VISC/LPRONY
Block Format Keyword This model describes an isotropic visco-elastic Maxwell model that can be used to add visco-elasticity to solid element with total strain formulation (Ismstr=10 or 12).
The visco-elasticity is input using a Prony series.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/VISC/LPRONY/mat_ID/unit_ID | |||||||||
M | Form | flag_visc |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
γi | τi |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier which refers to
the viscosity card. (Integer, maximum 10 digits) |
|
unit_ID | (Optional) Unit identifier. (Integer, maximum 10 digits) |
|
M | Maxwell model order (number of
Prony coefficients). Maximum order is 100. Default = 1 (Integer) |
|
Form | Initial visco-elastic modulus
formulation used.
(Integer) |
|
flag_visc | Viscous formulation flag.
(Integer) |
|
γi | Shear relaxation modulus for
i
th term (
i
=1,
M). (Real) |
|
τi | Relaxation time for
i
th term (
i
=1,
M). (Real) |
[s] |
Comments
- This viscous model is available only for total strain formulation with Ismstr=10 or 12 in the solid property).
- Form=1 is available only for material law /MAT/LAW42 (OGDEN), /MAT/LAW62 (VISC_HYP) and /MAT/LAW69.
- The viscosity model is ignored in case it is applied on a non-compatible material or strain formulation.
- Coefficients (
Gi
,
ηi
) are used to describe rate effects through
the Maxwell model.
Figure 1. The initial shear modulus given by the formula below, it corresponds to the shear modulus of material law.
G0=G∞+∑iGiand
ηi=1τiThe stiffness ratio is defined using:
γ∞=G∞G0=1-∑iγiWhere, γi=GiG0 .
- The viscosity effect is taken into account by using a Prony series.
The Kirchhoff viscous stress is computed using:τ(t)=τ0(t)−∫t0˙γ(s)⋅τ0(t−s)ds
with γ(t)=M∑i=1γie(−τit) .