/MAT/LAW127 (ENHANCED_COMPOSITE)

Block Format Keyword The model may be used to model composite materials with unidirectional layers. This model is implemented only for shell, thick shell and solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW127/mat_ID/unit_ID or /MAT/ENHANCED_COMPOSITE/mat_ID/unit_ID
mat_title
ρ i
E11 E22 E33
G12 G13 G23
ν 21 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqyVd42aaS baaSqaaiaaikdacaaIXaaabeaaaaa@3953@ ν 31 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqyVd42aaS baaSqaaiaaikdacaaIXaaabeaaaaa@3953@ ν 32 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqyVd42aaS baaSqaaiaaikdacaaIXaaabeaaaaa@3953@
σ T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ SLIMT1 Fct_IDT1 FscaleT1
σ T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ SLIMT2 Fct_IDT2 FscaleT2
σ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ SLIMS Fct_IDS FscaleS
σ C 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ SLIMC1 Fct_IDC1 FscaleC1
σ C 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ SLIMC2 Fct_IDC2 FscaleC2
Fcut
α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqySdegaaa@3797@ β 2WAY TI
DFAILT DFAILC DFAILS DFAILM RATIO
NCYRED FBRT YCFAC
EFS EPSF EPSR TSMD

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
E11 Young’s modulus in fiber, longitudinal direction 1.

(Real)

[ Pa ]
E22 Young’s modulus in matrix, transverse direction 2.

(Real)

[ Pa ]
E33 Young’s modulus in matrix, normal direction 3.

(Real)

[ Pa ]
G12 Shear modulus 12.

(Real)

[ Pa ]
G13 Shear modulus 13.

(Real)

[ Pa ]
G23 Shear modulus 23.

(Real)

[ Pa ]
ν 21 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqyVd42aaS baaSqaaiaaikdacaaIXaaabeaaaaa@3953@ Poisson’s ratio 21.

(Real)

ν 31 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqyVd42aaS baaSqaaiaaikdacaaIXaaabeaaaaa@3953@ Poisson’s ratio 31.

(Real)

ν 32 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqyVd42aaS baaSqaaiaaikdacaaIXaaabeaaaaa@3953@ Poisson’s ratio 32.

(Real)

σ T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ Maximum tensile stress in direction 1. Ignore if Fct_IDT1 is defined.

Default = 1E+20 (Real)

SLIMT1 Factor to determine the minimum stress limit after stress maximum σ T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ is reached. 2

Default = 1.0 (Real)

Fct_IDT1 Load curve identifier defining the tensile stress in direction 1 σ T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ as a function of strain rate.

(Integer)

FscaleT1 Stress scale factor for the function Fct_IDT1.

Default = 1.0 (Real)

[ Pa ]
σ T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ Maximum tensile stress in direction 2. Ignore if Fct_IDT2 is defined.

Default = 1E+20 (Real)

SLIMT2 Factor to determine the minimum stress limit after stress maximum σ T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ . 2

Default = 1.0 (Real)

Fct_IDT2 Load curve identifier defining the tensile stress in direction 1 σ T 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ as a function of strain rate.

(Integer)

FscaleT2 Stress scale factor for the function Fct_IDT2.

Default = 1.0 (Real)

[ Pa ]
σ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ Maximum shear stress in plane 12. Ignore if Fct_IDS is defined.

Default = 1E+20 (Real)

SLIMS Factor to determine the minimum stress limit after stress maximum σ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ . 2

Default = 1.0 (Real)

Fct_IDS Load curve ID defining the shear stress in plane 12. σ S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ as a function of strain rate.

(Integer)

FscaleS Stress scale factor for the function Fct_IDS.

Default = 1.0 (Real)

[ Pa ]
σ C 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ Maximum compression stress in direction 1. Ignore if Fct_IDC1 is defined.

Default = 1E+20 (Real)

SLIMC1 Factor to determine the minimum stress limit after stress maximum σ C 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ is reached. 2

Default = 1.0 (Real)

Fct_IDC1 Load curve identifier defining the compression stress in direction 1 σ C 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ as a function of strain rate.

(Integer)

FscaleC1 Stress scale factor for the function Fct_IDC1.

Default = 1.0 (Real)

[ Pa ]
σ C 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ Maximum compression stress in direction 2. Ignore if Fct_IDC2 is defined.

Default = 1E+20 (Real)

SLIMC2 Factor to determine the minimum stress limit after stress maximum σ C 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ is reached. 2

Default = 1.0 (Real)

Fct_IDC2 Load curve identifier defining the compression stress in direction 1 σ C 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ as a function of strain rate.

(Integer)

FscaleC2 Stress scale factor for the function Fct_IDC2.

Default = 1.0 (Real)

[ Pa ]
Fcut Equivalent strain rate cutoff frequency.

Default = 5000 Hz (Real)

[ 1 s ]
α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeqySdegaaa@3797@ Shear stress parameter for the nonlinear term. 3

Default = 0.0 (Real)

β Weighing factor for shear term in tensile fiber mode. 3

0.0 ≤ β ≤ 1.0

Default = 0.0 (Real)

2WAY Flag to turn on 2-way fiber action. This option is available only for solid and thick shells.
= 0 (Default)
Standard unidirectional behavior, meaning fibers run only in the direction 1.
= 1
2-way fiber behavior, meaning fibers run in both the first and second directions. The meaning of the fields DFAILT, DFAILC, YC, YT, SLIMT2 and SLIMC2 are altered if this flag is set.

(Integer)

TI Flag to turn on transversal isotropic behavior for material solid elements. 7
= 0 (Default)
Standard unidirectional behavior
= 1
Transversal isotropic behavior

(Integer)

DFAILT Maximum strain for fiber tension. 5

If 2WAY =1, then DFAILT is the fiber tensile failure strain in the first and second directions.

Default = 1E+10 (Real)

DFAILC Maximum strain for fiber compression (active only if DFAILT > 0). The input value should be negative. 5

Default = -1E+10 (Real)

DFAILS Maximum tensorial shear strain (active only if DFAILT > 0). 5

Default = 1E+10 (Real)

DFAILM Maximum strain for matrix straining in tension or compression (active only if DFAILT > 0). 5

Default = 1E+10 (Real)

RATIO Ratio parameter control to delete shell elements. Defines a ratio of failed plies in thickness.

Default = 1.0 (Real)

NCYRED Number of cycles for stress reduction from maximum to minimum.

Default = 1 (Integer)

FBRT Softening factor for fiber tensile stress:
= 0.0
Tensile stress is σ T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ .
> 1.0
Tensile strength is σ T 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabbaGcbaGaeq4Wdm3aaS baaSqaaiaadsfacaaIXaaabeaaaaa@397B@ reduced by FBRT after failure occurred in compressive matrix mode.

Default = 1.0 (Real)

YCFAC Reduction factor for compressive fiber stress after matrix compressive failure. The compressive stress in the fiber direction σ 1 c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaaGymaaWdaeaapeGaam4yaaaaaaa@39DE@ is reduced by YCFAC after compressive matrix failure.

Default = 2.0 (Real)

EFS Maximum effective strain for element layer failure. 5

Default = 1E+10 (Real)

EPSF Damage initiation transverse shear strain. 6

Default = 1E+10 (Real)

EPSR Final rupture transverse shear strain. 6

Default = 2E+10 (Real)

TSMD Transverse shear maximum damage. 6

Default = 0.90 (Real)

Example (Composite)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
Unit for material
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW127/1
Composite
#        Init. dens.
             1.5E-09
#                E11                 E22                 E33
             15000.0             15000.0             15000.0
#                G12                 G13                 G23
              5000.0              1000.0              1000.0
#               Nu21                Nu31                Nu32
                 0.1                 0.1                 0.1
#             SIG_T1             SLIM_T1           FCT_ID_T1           FSCALE_T1
               400.0                0.25                   0                 0.0
#             SIG_T2             SLIM_T2           FCT_ID_T2           FSCALE_T2
               400.0                0.25                   0                 0.0
#              SIG_S              SLIM_S            FCT_ID_S            FSCALE_S
                50.0                 1.0                   0                 0.0
#             SIG_C1             SLIM_C1           FCT_ID_C1           FSCALE_C1
               200.0                 0.5                   0                 0.0
#             SIG_C2             SLIM_C2           FCT_ID_C2           FSCALE_C2
               200.0                 0.5                   0                 0.0
#               FCUT
                 0.0
#               ALPH                BETA      2WAY        TI
                 0.0                 0.0         0         0
#             DFAILT              DFAILC              DFAILS              DFAILM               RATIO
                0.05                -0.2                 0.2                 0.3                 0.0
#             NCYRED                                    FBRT               YCFAC
                  10                                     0.0                 0.0
#                EFS                EPSF                EPSR                TSMD
                 0.2                 0.5                 0.8                 1.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. This material model presents linear elastic behavior until failure. Pseudo-plastic behavior is implemented as post-failure behavior until reaching a strain criterion controlling the ultimate material failure:
    • Under 2D stress conditions, for shells, the stress/strain relationship in the orthotropic frame is given by:
      σ 11 = C 11 ε 11 + C 12 ε 22 σ 22 = C 21 ε 11 + C 22 ε 22 σ 12 = G 12 ε 12 σ 23 =κ G 23 ε 23 σ 31 =κ G 13 ε 31 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpcaWG dbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabew7aLnaaBaaaleaaca aIXaGaaGymaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaigdacaaI Yaaabeaakiabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacq aHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Jaam4qamaa BaaaleaacaaIYaGaaGymaaqabaGccqaH1oqzdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaam4qamaaBaaaleaacaaIYaGaaGOmaaqa baGccqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaadEeadaWgaaWc baGaaGymaiaaikdaaeqaaOGaeqyTdu2aaSbaaSqaaiaaigdacaaIYa aabeaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqabaGccqGH 9aqpcqaH6oWAcaWGhbWaaSbaaSqaaiaaikdacaaIZaaabeaakiabew 7aLnaaBaaaleaacaaIYaGaaG4maaqabaaakeaacqaHdpWCdaWgaaWc baGaaG4maiaaigdaaeqaaOGaeyypa0JaeqOUdSMaam4ramaaBaaale aacaaIXaGaaG4maaqabaGccqaH1oqzdaWgaaWcbaGaaG4maiaaigda aeqaaaaakiaawUhaaaaa@7B25@
      Where,
      C = 1 1 ν 12 ν 21 E 11 ν 12 E 22 ν 21 E 11 E 22 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2 da9maalaaabaGaaGymaaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWc baGaaGymaiaaikdaaeqaaOGaeqyVd42aaSbaaSqaaiaaikdacaaIXa aabeaaaaGcdaWadaqaauaabeqaciaaaeaacaWGfbWaaSbaaSqaaiaa igdacaaIXaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIXaGaaGOmaa qabaGccaWGfbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiabe27a UnaaBaaaleaacaaIYaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiaadweadaWgaaWcbaGaaGOmaiaaikdaaeqa aaaaaOGaay5waiaaw2faaaaa@53AA@
      κ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSgaaa@37A9@
      Out of plane shear coefficient scale factor
    • The 3D stress/strain relationship in the orthotropic frame is given by:
      σ 11 = C 11 ε 11 + C 12 ε 22 + C 13 ε 33 σ 22 = C 12 ε 11 + C 22 ε 22 + C 23 ε 33 σ 33 = C 13 ε 11 + C 23 ε 22 + C 33 ε 33 σ 12 = G 12 ε 12 σ 23 = G 23 ε 23 σ 31 = G 13 ε 31 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpcaWG dbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabew7aLnaaBaaaleaaca aIXaGaaGymaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaigdacaaI Yaaabeaakiabew7aLnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHRa WkcaWGdbWaaSbaaSqaaiaaigdacaaIZaaabeaakiabew7aLnaaBaaa leaacaaIZaGaaG4maaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGOmai aaikdaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaaIXaGaaGOmaaqa baGccqaH1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaey4kaSIaam 4qamaaBaaaleaacaaIYaGaaGOmaaqabaGccqaH1oqzdaWgaaWcbaGa aGOmaiaaikdaaeqaaOGaey4kaSIaam4qamaaBaaaleaacaaIYaGaaG 4maaqabaGccqaH1oqzdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGa eq4Wdm3aaSbaaSqaaiaaiodacaaIZaaabeaakiabg2da9iaadoeada WgaaWcbaGaaGymaiaaiodaaeqaaOGaeqyTdu2aaSbaaSqaaiaaigda caaIXaaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGOmaiaaiodaae qaaOGaeqyTdu2aaSbaaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaa doeadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeqyTdu2aaSbaaSqaai aaiodacaaIZaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOm aaqabaGccqGH9aqpcaWGhbWaaSbaaSqaaiaaigdacaaIYaaabeaaki abew7aLnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqaHdpWCdaWg aaWcbaGaaGOmaiaaiodaaeqaaOGaeyypa0Jaam4ramaaBaaaleaaca aIYaGaaG4maaqabaGccqaH1oqzdaWgaaWcbaGaaGOmaiaaiodaaeqa aaGcbaGaeq4Wdm3aaSbaaSqaaiaaiodacaaIXaaabeaakiabg2da9i aadEeadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaeqyTdu2aaSbaaSqa aiaaiodacaaIXaaabeaaaaGccaGL7baaaaa@9CC2@

      Where, C= 1 1 ν 12 ν 21 ν 13 ν 31 ν 23 ν 32 2 ν 21 ν 32 ν 13 E 1 1 ν 23 ν 32 E 11 ν 21 ν 31 ν 32 E 11 ν 31 ν 21 ν 32 sym E 2 1 ν 13 ν 31 E 22 ν 32 ν 12 ν 31 sym sym E 3 1 ν 12 ν 21 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2 da9maalaaabaGaaGymaaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWc baGaaGymaiaaikdaaeqaaOGaeqyVd42aaSbaaSqaaiaaikdacaaIXa aabeaakiabgkHiTiabe27aUnaaBaaaleaacaaIXaGaaG4maaqabaGc cqaH9oGBdaWgaaWcbaGaaG4maiaaigdaaeqaaOGaeyOeI0IaeqyVd4 2aaSbaaSqaaiaaikdacaaIZaaabeaakiabe27aUnaaBaaaleaacaaI ZaGaaGOmaaqabaGccqGHsislcaaIYaGaeqyVd42aaSbaaSqaaiaaik dacaaIXaaabeaakiabe27aUnaaBaaaleaacaaIZaGaaGOmaaqabaGc cqaH9oGBdaWgaaWcbaGaaGymaiaaiodaaeqaaaaakmaadmaabaqbae qabmWaaaqaaiaadweadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaa igdacqGHsislcqaH9oGBdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaeq yVd42aaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaaaqa aiaadweadaWgaaWcbaGaaGymaiaaigdaaeqaaOWaamWaaeaacqaH9o GBdaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaeyOeI0IaeqyVd42aaSba aSqaaiaaiodacaaIXaaabeaakiabe27aUnaaBaaaleaacaaIZaGaaG OmaaqabaaakiaawUfacaGLDbaaaeaacaWGfbWaaSbaaSqaaiaaigda caaIXaaabeaakmaadmaabaGaeqyVd42aaSbaaSqaaiaaiodacaaIXa aabeaakiabgkHiTiabe27aUnaaBaaaleaacaaIYaGaaGymaaqabaGc cqaH9oGBdaWgaaWcbaGaaG4maiaaikdaaeqaaaGccaGLBbGaayzxaa aabaGaam4CaiaadMhacaWGTbaabaGaamyramaaBaaaleaacaaIYaaa beaakmaabmaabaGaaGymaiabgkHiTiabe27aUnaaBaaaleaacaaIXa GaaG4maaqabaGccqaH9oGBdaWgaaWcbaGaaG4maiaaigdaaeqaaaGc caGLOaGaayzkaaaabaGaamyramaaBaaaleaacaaIYaGaaGOmaaqaba GcdaWadaqaaiabe27aUnaaBaaaleaacaaIZaGaaGOmaaqabaGccqGH sislcqaH9oGBdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeqyVd42aaS baaSqaaiaaiodacaaIXaaabeaaaOGaay5waiaaw2faaaqaaiaadoha caWG5bGaamyBaaqaaiaadohacaWG5bGaamyBaaqaaiaadweadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaaigdacqGHsislcqaH9oGBdaWg aaWcbaGaaGymaiaaikdaaeqaaOGaeqyVd42aaSbaaSqaaiaaikdaca aIXaaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaa@B8D4@

  2. Pseudo-Plastic behavior is considered at the post failure behavior for each direction:
    Figure 1. Behavior in direction 1


  3. The Chang-Chang criteria are given as:
    • Tensile Fiber mode:
      σ 11 > 0 e f 2 = σ 11 σ T 1 2 + β σ 12 σ S 2 1 e f 2 0  failed e f 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaakiabg6da+iaaicdacqGHshI3caWG LbWaa0baaSqaaiaadAgaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH dpWCdaWgaaWcbaGaamivaiaaigdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgUcaRiabek7aInaabmaabaWaaSaa aeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeq4Wdm 3aaSbaaSqaaiaadofaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaigdacqGHshI3daGabaabaeqabaGaam yzamaaDaaaleaacaWGMbaabaGaaGOmaaaakiabgwMiZkaaicdacaqG GaGaaeOzaiaabggacaqGPbGaaeiBaiaabwgacaqGKbaabaGaamyzam aaDaaaleaacaWGMbaabaGaaGOmaaaakiabgYda8iaaicdacaqGGaGa aeyzaiaabYgacaqGHbGaae4CaiaabshacaqGPbGaae4yaaaacaGL7b aaaaa@7256@

      If e f 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGMbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B3F@ , shell element ply is removed if DFAILT =0 or solid element is deleted.

    • Compressive Fiber mode:
      σ 11 < 0 e f 2 = σ 11 σ C 1 2 1 e f 2 0  failed e f 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaakiabgYda8iaaicdacqGHshI3caWG LbWaa0baaSqaaiaadAgaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH dpWCdaWgaaWcbaGaam4qaiaaigdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacqGHshI3daGabaab aeqabaGaamyzamaaDaaaleaacaWGMbaabaGaaGOmaaaakiabgwMiZk aaicdacaqGGaGaaeOzaiaabggacaqGPbGaaeiBaiaabwgacaqGKbaa baGaamyzamaaDaaaleaacaWGMbaabaGaaGOmaaaakiabgYda8iaaic dacaqGGaGaaeyzaiaabYgacaqGHbGaae4CaiaabshacaqGPbGaae4y aaaacaGL7baaaaa@66F1@

      If e f 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGMbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B3F@ , σ 11 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395C@ is set to minimum stress limit.

    • Tensile Matrix mode:
      σ 22 > 0 e m 2 = σ 22 σ T 2 2 + σ 12 2 2 G 12 + 4 3 α σ 12 4 σ S 2 2 G 12 + 4 3 α σ S 4 1 e m 2 0  failed e m 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabg6da+iaaicdacqGHshI3caWG LbWaa0baaSqaaiaad2gaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaH dpWCdaWgaaWcbaGaamivaiaaikdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaaeaadaWc aaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaGcdaahaaWcbe qaaiaaikdaaaaakeaacaaIYaGaam4ramaaBaaaleaacaaIXaGaaGOm aaqabaaaaOGaey4kaSYaaSaaaeaacaaI0aaabaGaaG4maaaacqGHfl Y1cqaHXoqycqGHflY1cqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqa aOWaaWbaaSqabeaacaaI0aaaaaGcbaWaaSaaaeaacqaHdpWCdaWgaa WcbaGaam4uaaqabaGcdaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa am4ramaaBaaaleaacaaIXaGaaGOmaaqabaaaaOGaey4kaSYaaSaaae aacaaI0aaabaGaaG4maaaacqGHflY1cqaHXoqycqGHflY1cqaHdpWC daWgaaWcbaGaam4uaaqabaGcdaahaaWcbeqaaiaaisdaaaaaaaGcca GLOaGaayzkaaGaeyOeI0IaaGymaiabgkDiEpaaceaaeaqabeaacaWG LbWaa0baaSqaaiaad2gaaeaacaaIYaaaaOGaeyyzImRaaGimaiaabc cacaqGMbGaaeyyaiaabMgacaqGSbGaaeyzaiaabsgaaeaacaWGLbWa a0baaSqaaiaad2gaaeaacaaIYaaaaOGaeyipaWJaaGimaiaabccaca qGLbGaaeiBaiaabggacaqGZbGaaeiDaiaabMgacaqGJbaaaiaawUha aaaa@91B7@

      If e m 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGTbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B46@ , σ 22 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395C@ is set to minimum stress limit.

    • Compressive Matrix mode:
      σ 22 < 0 e m 2 = σ 22 σ C 2 2 1 e m 2 0  failed e m 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgYda8iaaicdacqGHshI3caWG LbWaa0baaSqaaiaad2gaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaH dpWCdaWgaaWcbaGaam4qaiaaikdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacqGHshI3daGabaab aeqabaGaamyzamaaDaaaleaacaWGTbaabaGaaGOmaaaakiabgwMiZk aaicdacaqGGaGaaeOzaiaabggacaqGPbGaaeiBaiaabwgacaqGKbaa baGaamyzamaaDaaaleaacaWGTbaabaGaaGOmaaaakiabgYda8iaaic dacaqGGaGaaeyzaiaabYgacaqGHbGaae4CaiaabshacaqGPbGaae4y aaaacaGL7baaaaa@670B@

      If e m 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGTbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B46@ , σ 22 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395C@ is set to minimum stress limit.

    • The original criterion of Hashin in the tensile fiber mode is set with β = 1.
    • For β = 0, you get the maximum stress criterion which is found to compare better to experiments.
  4. If the 2WAY fiber flag is set, then the failure criteria for tensile and compressive fiber failure in the orthotropic 1 direction are unchanged. For orthotropic direction 2, the same failure criteria as for the 1-direction fibers are used:
    • Tensile fiber mode in the orthotropic direction 2:
      σ 22 > 0 e f 2 = σ 22 σ T 2 2 + β σ 12 σ S 2 1 e f 2 0  failed e f 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabg6da+iaaicdacqGHshI3caWG LbWaa0baaSqaaiaadAgaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaH dpWCdaWgaaWcbaGaamivaiaaikdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgUcaRiabek7aInaabmaabaWaaSaa aeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeq4Wdm 3aaSbaaSqaaiaadofaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaigdacqGHshI3daGabaabaeqabaGaam yzamaaDaaaleaacaWGMbaabaGaaGOmaaaakiabgwMiZkaaicdacaqG GaGaaeOzaiaabggacaqGPbGaaeiBaiaabwgacaqGKbaabaGaamyzam aaDaaaleaacaWGMbaabaGaaGOmaaaakiabgYda8iaaicdacaqGGaGa aeyzaiaabYgacaqGHbGaae4CaiaabshacaqGPbGaae4yaaaacaGL7b aaaaa@725B@

      If e f 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGMbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B3F@ , shell element ply is removed if DFAILT =0 or solid element is deleted.

    • Compressive fiber mode in the orthotropic direction 2:
      σ 22 < 0 e f 2 = σ 22 σ C 2 2 1 e f 2 0  failed e f 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaakiabgYda8iaaicdacqGHshI3caWG LbWaa0baaSqaaiaadAgaaeaacaaIYaaaaOGaeyypa0ZaaeWaaeaada Wcaaqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqaH dpWCdaWgaaWcbaGaam4qaiaaikdaaeqaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacqGHshI3daGabaab aeqabaGaamyzamaaDaaaleaacaWGMbaabaGaaGOmaaaakiabgwMiZk aaicdacaqGGaGaaeOzaiaabggacaqGPbGaaeiBaiaabwgacaqGKbaa baGaamyzamaaDaaaleaacaWGMbaabaGaaGOmaaaakiabgYda8iaaic dacaqGGaGaaeyzaiaabYgacaqGHbGaae4CaiaabshacaqGPbGaae4y aaaacaGL7baaaaa@66F6@

      If e f 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGMbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B3F@ , σ 22 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIXaaabeaaaaa@395C@ is set to minimum stress limit.

    • Matrix fails only in shear:
      e m 2 = σ 12 σ S 2 1 e m 2 0  failed e m 2 < 0  elastic MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGTbaabaGaaGOmaaaakiabg2da9maabmaabaWaaSaaaeaa cqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeq4Wdm3aaS baaSqaaiaadofaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiabgkHiTiaaigdacqGHshI3daGabaabaeqabaGaamyzam aaDaaaleaacaWGTbaabaGaaGOmaaaakiabgwMiZkaaicdacaqGGaGa aeOzaiaabggacaqGPbGaaeiBaiaabwgacaqGKbaabaGaamyzamaaDa aaleaacaWGTbaabaGaaGOmaaaakiabgYda8iaaicdacaqGGaGaaeyz aiaabYgacaqGHbGaae4CaiaabshacaqGPbGaae4yaaaacaGL7baaaa a@5ED2@

      If e m 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaDa aaleaacaWGTbaabaGaaGOmaaaakiabgwMiZkaaicdaaaa@3B46@ , σ 12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaigdacaaIYaaabeaaaaa@395D@ is set to minimum stress limit.

  5. Integration point failure can occur in three different ways:
    • If DFAILT is zero, failure occurs if the Chang-Chang failure criterion is satisfied in the tensile fiber mode.
    • If DFAILT is greater than zero, failure occurs if:
      • The fiber strain is greater than DFAILT or less than DFAILC
      • If the absolute value of matrix strain is greater than DFAILM
      • If the absolute value of tensorial shear strain is greater than DFAILS
    • If EFS is greater than zero, failure occurs if the effective strain is greater than EFS.
  6. Transverse shear strain damage model.

    In an optional damage model for transverse shear strain, out-of-plane stiffness (G13 and G23) can linearly decrease to model interlaminar shear failure. Damage starts when effective transverse shear strain ε e f f = ε 13 2 + ε 23 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwgacaWGMbGaamOzaaqabaGccqGH9aqpdaGcaaqaaiab ew7aLnaaBaaaleaacaaIXaGaaG4maaqabaGcdaahaaWcbeqaaiaaik daaaGccqGHRaWkcqaH1oqzdaWgaaWcbaGaaGOmaiaaiodaaeqaaOWa aWbaaSqabeaacaaIYaaaaaqabaaaaa@4513@ reaches EPSF. Final rupture occurs when effective transverse shear strain reaches EPSR.

    A maximum damage of TSMD (0.0 < TSMD < 0.99) cannot be exceeded.
    Figure 2. Linear damage for transverse shear behavior


  7. The flag TI applies only to transversal isotropic behavior for material solid elements. the stress/strain relationship is given using the 3D stress/Strain relationship, under the following conditions:
    E 11 = E 22 E 33 ν 12 = ν 21 ν 31 = ν 32 G 23 = G 13 G 12 = E 11 2 1 + ν 12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb WaaSbaaSqaaiaaigdacaaIXaaabeaakiabg2da9iaadweadaWgaaWc baGaaGOmaiaaikdaaeqaaaGcbaGaamyramaaBaaaleaacaaIZaGaaG 4maaqabaaakeaacqaH9oGBdaWgaaWcbaGaaGymaiaaikdaaeqaaOGa eyypa0JaeqyVd42aaSbaaSqaaiaaikdacaaIXaaabeaaaOqaaiabe2 7aUnaaBaaaleaacaaIZaGaaGymaaqabaGccqGH9aqpcqaH9oGBdaWg aaWcbaGaaG4maiaaikdaaeqaaaGcbaGaam4ramaaBaaaleaacaaIYa GaaG4maaqabaGccqGH9aqpcaWGhbWaaSbaaSqaaiaaigdacaaIZaaa beaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0 ZaaSaaaeaacaWGfbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaa ikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBdaWgaaWcbaGaaGymai aaikdaaeqaaaGccaGLOaGaayzkaaaaaaaaaa@615A@
  8. Damage mode value can be display with the output /H3D/ELEM/DAMG/ID=<mat_ID>/MODE=ALL/… with the following output:
    • Tensile fiber damage
    • Compressive tensile damage
    • Tension transverse matrix damage
    • Compressive transverse matrix damage
    • Shear matrix damage