Rotating Cylinder

Description

This HTC correlation can be used on the inner or outer surface of a rotating cylinder. The correlation is based on several sources and the equation coefficients and exponents can be modified, if needed, to match other situations. For some situations, the default values use the horizontal flat plate correlation.

The correlation can be applied to a convector resistor and is found in the “Free Convection Nu – Builtin” type.
Type
BI_FREE_CONV_NU
Subtype
ROTATING_CYL
Table 1. Input List
Index UI Name

(.flo label)

Description
1 Cylinder Radius

(RADIUS)

The cylinder radius.

If AUTO, the radius of the flow chamber attached to the convector will be used.

2 Length

(LENGTH)

The cylinder length.
3 Rotor Index

(ROTOR_IDX)

The index of the rotor shaft containing the RPM for the cylinder surface. The speed for this rotor shaft is set in the Run > Reference Conditions tab.

If AUTO, the rotation assigned to the thermal node attached to the convector will be used.

4 Surface Dir

(SURF_DIR)

1= Radially Out, convection applied to the cylinder's outer surface.

1= Radially In, convection applied to the cylinder's inner surface.

5 Laminar Coefficient

(LAM_COEF)

Coefficient to be used in the laminar Nu equation.

If AUTO, use the value described in the Formulation section.

6 Laminar Exponent

(LAM_EXP)

Exponent to be used in the laminar Nu equation.

If AUTO, use the value described in the Formulation section.

7 Turbulent Coefficient

(TUR_COEF)

Coefficient to be used in the turbulent Nu equation.

If AUTO, use the value described in the Formulation section.

8 Turbulent Exponent

(TUR_EXP)

Exponent to be used in the turbulent Nu equation.

If AUTO, use the value described in the Formulation section.

9 Laminar-to-Transition Ra

(RA_LAM)

Rayleigh number where the laminar regime of the flow ends and the transitional regime starts.

If AUTO, RA_LAM=9.8*10^11.

10 Transition-to-Turbulent Ra

(RA_TURB)

Rayleigh number where the transitional regime of the flow ends and the fully turbulent regime starts.

If AUTO, RA_TURB=1.02*10^12.

11 HTC Multiplier

(HTC_MULT)

A constant multiplier to scale the value of the heat transfer coefficient obtained from the correlation.

Formulation

This correlation uses a simple Nu formulation, with coefficients and exponents used according to geometry and flow conditions.

Nu=coeff*Raexp
Ra=Gr*Pr
Gr=ω2*Radius*(Length2)3*(ρμ)2*β*abs(TwallTfluid)
HTC=Nu*k(Length2) 

The default coefficient and exponent are set if the inputs are set to AUTO. These values can be found in several references, including those shown in the table below. The values from reference 2 are for a flat horizontal plate.
Stable Configuration Unstable Configuration
LAM_COEF 0.27 (ref 2, eq 9.32) 0.44 (ref 1, section 3.2)
LAM_EXP 0.25 (ref 2, eq 9.32) 0.25 (ref 1, eq 3.6)
TURB_COEF 0.27 (ref 2, eq 9.32) 0.15 (ref 2, eq 9.31)
TURB_EXP 0.25 (ref 2, eq 9.32) 0.333 (ref 2, eq 9.31)
The stability is determined by the temperatures and the side of the cylinder (inner or outer). The force vector for a rotating cylinder is radially outward, which is the opposite of a gravity force vector for a horizontal plate.
Stable Configuration Unstable Configuration
Cylinder Inner Surface Twall < Tfluid Twall > Tfluid
Cylinder Outer Surface Twall > Tfluid Twall < Tfluid
R a = R a y l e i g h   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyyaiabg2da9iaadkfacaWGHbGaamyEaiaadYgacaWG LbGaamyAaiaadEgacaWGObGaaiiOaiaad6eacaWG1bGaamyBaiaadk gacaWGLbGaamOCaaaa@46E3@
ρ = f l u i d   b u l k   d e n s i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCcqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGIbGaamyDaiaadYgacaWGRbGaaiiOaiaadsgacaWGLbGaam OBaiaadohacaWGPbGaamiDaiaadMhaaaa@4A38@
μ = f l u i d   f i l m   v i s c o s i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBcqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGMbGaamyAaiaadYgacaWGTbGaaiiOaiaadAhacaWGPbGaam 4CaiaadogacaWGVbGaam4CaiaadMgacaWG0bGaamyEaaaa@4C1F@
k = f l u i d   f i l m   c o n d u c t i v i t y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbGaeyypa0JaamOzaiaadYgacaWG1bGaamyAaiaadsgacaGG GcGaamOzaiaadMgacaWGSbGaamyBaiaacckacaWGJbGaam4Baiaad6 gacaWGKbGaamyDaiaadogacaWG0bGaamyAaiaadAhacaWGPbGaamiD aiaadMhaaaa@4E20@
ω = r o t a t i o n   i n   r a d i a n s / s e c o n d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHjpWDcqGH9aqpcaWGYbGaam4BaiaadshacaWGHbGaamiDaiaa dMgacaWGVbGaamOBaiaacckacaWGPbGaamOBaiaacckacaWGYbGaam yyaiaadsgacaWGPbGaamyyaiaad6gacaWGZbGaai4laiaadohacaWG LbGaam4yaiaad+gacaWGUbGaamizaaaa@517E@
P r = f l u i d   f i l m   P r a n d t l   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamOCaiabg2da9iaadAgacaWGSbGaamyDaiaadMgacaWG KbGaaiiOaiaadAgacaWGPbGaamiBaiaad2gacaGGGcGaamiuaiaadk hacaWGHbGaamOBaiaadsgacaWG0bGaamiBaiaacckacaWGobGaamyD aiaad2gacaWGIbGaamyzaiaadkhaaaa@50BE@
β = f l u i d   b u l k   c o m p r e s s i b i l i t y   f a c t o r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGycqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaamizaiaa cckacaWGIbGaamyDaiaadYgacaWGRbGaaiiOaiaadogacaWGVbGaam yBaiaadchacaWGYbGaamyzaiaadohacaWGZbGaamyAaiaadkgacaWG PbGaamiBaiaadMgacaWG0bGaamyEaiaacckacaWGMbGaamyyaiaado gacaWG0bGaam4Baiaadkhaaaa@5864@
Table 2. Output List
Index .res Label Description
1 TNET Thermal network ID that has the convector where this correlation is used.
2 CONV_ID Convector ID that is using this correlation.
3 RAD Cylinder radius.
4 RPM Cylinder rotations per minute.
5 LAM_COEF Coefficient used in the laminar Nu equation.
6 LAM_EXP Exponent used in the laminar Nu equation.
7 TUR_COEF Coefficient used in the turbulent Nu equation.
8 TUR_EXP Exponent used in the turbulent Nu equation.
9 RA Rayleigh number.
10 NU Calculated Nusselt number.
11 HTC Calculated Heat Transfer Coefficient.

Heat Transfer Correlation References

  1. Tang, H., Puttock-Brown M., Owen J. M., "Buoyancy-Induced Flow and Heat Transfer in Compressor Rotors", Journal of Engineering for Gas Turbines and Power, July, 2018.
  2. Incropera, F. and Dewitt, D. Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, 2006.