# /MONVOL/PRES

Block Format Keyword Describes the pressure load curve monitored volume type.

## Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MONVOL/PRES/monvol_ID/unit_ID
monvol_title
surf_IDex
Ascalet
fct_ID Fscale Itypfun

## Definition

Field Contents SI Unit Example
monvol_ID Monitored volume identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

monvol_title Monitored volume title.

(Character, maximum 100 characters)

surf_IDex External surface identifier.

(Integer)

Ascalet Abscissa scale factor for time based functions. 4

(Real)

$\left[\text{s}\right]$
fct_ID Load curve identifier for relative pressure.

If Itypfun=0, the function defines ${P}_{rel}=fct_ID\left(\frac{{V}_{0}}{V}\right)$

If Itypfun=1, the function defines ${P}_{rel}=fct_ID\left(t\right)$

If Itypfun=2, the function defines ${P}_{rel}=fct_ID\left(\frac{V}{{V}_{0}}\right)$

If Itypfun=3, the function defines ${P}_{rel}=fct_ID\left(t\right)*\left(\frac{{V}_{O}}{V}\right)$

(Integer)

Fscale Load curve scale factor for relative pressure. 4

Default = 1.0 (Real)

$\left[\text{Pa}\right]$
Itypfun Flag type of relative pressure function defined in fct_ID.
=0
Pressure is ${P}_{rel}=fct_ID\left(\frac{{V}_{0}}{V}\right)$
= 1
Pressure is ${P}_{rel}=fct_ID\left(t\right)$
=2
Pressure is ${P}_{rel}=fct_ID\left(\frac{V}{{V}_{0}}\right)$
=3
Pressure is ${P}_{rel}=fct_ID\left(t\right)*\left(\frac{{V}_{O}}{V}\right)$

(Integer)

$\text{F}\left(t\prime \right)=\mathit{fct}_{\mathit{ID}}_{t}=\text{f}\left(\frac{t}{{\mathit{Ascale}}_{t}}\right)$
Where, $t$ is time.
$\mathrm{F}\left(P\text{'}\right)=fct_I{D}_{P}=\mathrm{f}\left(\frac{{P}_{rel}}{Fscale}\right)$
Where, ${P}_{rel}$ is relative pressure.