/MAT/LAW169 (ARUP_ADHESIVE)
Block Format Keyword This is an elastoplastic connection material law with coupled damage and failure. It can be used to model adhesives.
The yield and failure surfaces are described through a power law combination of normal and shear stresses. This material is applicable only to solid hexahedron elements (/BRICK) and connection property (/PROP/TYPE43 (CONNECT)).
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW169/mat_ID/unit_ID or /MAT/ARUP_ADHESIVE/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E | SHT_SL | TENMAX | GCTEN | ||||||
SHRMAX | GCSHR | PWRT | PWRS | SHRP |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | (Optional) Unit
identifier. (Integer, maximum 10 digits |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
Initial
density. (Real) |
||
E | Young’s (stiffness) modulus per
unit length in tension. 1 (Real) |
|
Poisson ratio. Default = 0.0 (Real) |
||
SHT_SL | Slope of yield surface at zero
normal stress. 3 Default = 0.0 (Real) |
|
TENMAX | Maximum stress in normal
direction. Default = 120 (Real) |
|
GCTEN | Energy per unit area to fail in
normal direction. 5
6 Default = 120 (Real) |
|
SHRMAX | Maximum stress in shear
direction. Default = 120 (Real) |
|
GCSHR | Energy per unit area to fail in
shear direction. 5
6
Default = 120 (Real) |
|
PWRT | Power law exponent for normal
direction. Default = 2 (Integer) |
|
PWRS | Power law exponent for shear
direction. Default = 2 (Integer) |
|
SHRP | Shear plateau ratio. Default = 0.0 (Real) |
Example
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW169/1/1
ARUP MATERIAL
# RHO_I
7.8E-6
# E PR SHT_SL TENMAX GCTEN
1.89 0.3 2 1.6 2.0
# SHRMAX GCSHR PWRT PWRS SHRP
0.8 1.2 2 2 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The Young's
modulus is defined per displacement in order to be independent from the
initial height of the solid element.
For example, E=210000 MPa/mm means that the normal stress increases by 210000 MPa for each 1 mm of displacement until the yield stress limit or the failure limit are reached.
- The shear stiffness is computed using the Young's modulus and
Poisson ratio.
- The yield and
failure surfaces are described by a power law using the normal and shear
stresses.
Where,
- The plasticity model is not volume conserving. The plasticity only occurs in shear.
- The two
parameters GCTEN and GCSHR are
respectively the areas under the curves of stress versus displacement for
pure tension and pure shear.
Figure 1. Stress- displacement curves for pure tension and pure shear
- The failure
displacement limits are defined with:
- In pure tension
- In pure shear
Element is deleted when one failure limit is reached.
Energy per unit area to fail will be updated in the Starter to respect the following conditions. - In pure tension
- All nodes of the solid elements must be connected to other shells or solid elements, secondary nodes of rigid body (/RBODY) or secondary nodes of tied interface (/INTER/TYPE2).