/MAT/LAW169 (ARUP_ADHESIVE)

Block Format Keyword This is an elastoplastic connection material law with coupled damage and failure. It can be used to model adhesives.

The yield and failure surfaces are described through a power law combination of normal and shear stresses. This material is applicable only to solid hexahedron elements (/BRICK) and connection property (/PROP/TYPE43 (CONNECT)).

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW169/mat_ID/unit_ID or /MAT/ARUP_ADHESIVE/mat_ID/unit_ID
mat_title
ρ i
E ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AF@ SHT_SL TENMAX GCTEN
SHRMAX GCSHR PWRT PWRS SHRP

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
E Young’s (stiffness) modulus per unit length in tension. 1

(Real)

[ P a m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaadcfacaWGHbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3AA3@
ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AF@ Poisson ratio.

Default = 0.0 (Real)

SHT_SL Slope of yield surface at zero normal stress. 3

Default = 0.0 (Real)

TENMAX Maximum stress in normal direction.

Default = 120 (Real)

[ Pa ]
GCTEN Energy per unit area to fail in normal direction. 5 6

Default = 120 (Real)

[ J m 2 ]
SHRMAX Maximum stress in shear direction.

Default = 120 (Real)

[ Pa ]
GCSHR Energy per unit area to fail in shear direction. 5 6

Default = 120 (Real)

[ J m 2 ]
PWRT Power law exponent for normal direction.

Default = 2 (Integer)

PWRS Power law exponent for shear direction.

Default = 2 (Integer)

SHRP Shear plateau ratio.

Default = 0.0 (Real)

Example

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1 
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW169/1/1
ARUP MATERIAL
#              RHO_I
              7.8E-6
#                  E                  PR              SHT_SL              TENMAX               GCTEN
                1.89                 0.3                   2                 1.6                 2.0
#             SHRMAX               GCSHR      PWRT      PWRS                SHRP             
                 0.8                 1.2         2         2                   0                   
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The Young's modulus is defined per displacement in order to be independent from the initial height of the solid element.

    For example, E=210000 MPa/mm means that the normal stress increases by 210000 MPa for each 1 mm of displacement until the yield stress limit or the failure limit are reached.

  2. The shear stiffness is computed using the Young's modulus and Poisson ratio.
    G= E 2 1+ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4raiabg2 da9maalaaabaGaamyraaqaaiaaikdadaqadaqaaiaaigdacqGHRaWk cqaH9oGBaiaawIcacaGLPaaaaaaaaa@3E3B@
  3. The yield and failure surfaces are described by a power law using the normal and shear stresses.
    max 0 , σ Z Z T E N M A X P W R T + τ S H R M A X S H T _ S L σ Z Z P W R S = 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiGac2gacaGGHbGaaiiEamaabmaabaGaaGimaiaacYcacqaH dpWCdaWgaaWcbaGaamOwaiaadQfaaeqaaaGccaGLOaGaayzkaaaaba aeaaaaaaaaa8qacaWGubGaamyraiaad6eacaWGnbGaamyqaiaadIfa aaaapaGaayjkaiaawMcaamaaCaaaleqabaGaamiuaiaadEfacaWGsb GaamivaaaakiabgUcaRmaabmaabaWaaSaaaeaacqaHepaDaeaapeGa am4uaiaadIeacaWGsbGaamytaiaadgeacaWGybGaeyOeI0Iaam4uai aadIeacaWGubGaai4xaiaadofacaWGmbGaeyyXIC9daiabeo8aZnaa BaaaleaacaWGAbGaamOwaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaWGqbGaam4vaiaadkfacaWGtbaaaOGaeyypa0JaaGymaaaa @645E@

    Where, τ = σ y z 2 + σ x z 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey ypa0ZaaOaaaeaacqaHdpWCdaqhaaWcbaGaamyEaiaadQhaaeaacaaI YaaaaOGaey4kaSIaeq4Wdm3aa0baaSqaaiaadIhacaWG6baabaGaaG Omaaaaaeqaaaaa@430D@

  4. The plasticity model is not volume conserving. The plasticity only occurs in shear.
  5. The two parameters GCTEN and GCSHR are respectively the areas under the curves of stress versus displacement for pure tension and pure shear.
    Figure 1. Stress- displacement curves for pure tension and pure shear


  6. The failure displacement limits are defined with:
    • In pure tension
      d ft = 2GCTEN TENMAX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGMbGaamiDaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqGH flY1caWGhbGaam4qaiaadsfacaWGfbGaamOtaaqaaabaaaaaaaaape GaamivaiaadweacaWGobGaamytaiaadgeacaWGybaaaaaa@4629@
    • In pure shear
      d fs = 2GCSHR 1+SHRP SHRMAX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGMbGaam4CaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqGH flY1caWGhbGaam4qaiaadofacaWGibGaamOuaaqaamaabmaabaGaaG ymaiabgUcaRiaadofacaWGibGaamOuaiaadcfaaiaawIcacaGLPaaa cqGHflY1caWGtbGaamisaiaadkfacaWGnbGaamyqaiaadIfaaaaaaa@4ED5@

    Element is deleted when one failure limit is reached.

    Energy per unit area to fail will be updated in the Starter to respect the following conditions.
    • GCTEN TENMA X 2 2E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eacaWGubGaamyraiaad6eacqGHLjYSdaWcaaqaaabaaaaaaaaapeGa amivaiaadweacaWGobGaamytaiaadgeacaWGybWaaWbaaSqabeaaca aIYaaaaaGcpaqaa8qacaaIYaGaamyraaaaaaa@4378@
    • GCSHR SHRMA X 2 2G +SHRMAX d p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4raiaado eacaWGtbGaamisaiaadkfacqGHLjYSdaWcaaqaaabaaaaaaaaapeGa am4uaiaadIeacaWGsbGaamytaiaadgeacaWGybWaaWbaaSqabeaaca aIYaaaaaGcpaqaa8qacaaIYaGaam4raaaapaGaey4kaSIaam4uaiaa dIeacaWGsbGaamytaiaadgeacaWGybGaeyyXICTaamizamaaBaaale aacaWGWbaabeaaaaa@4DBC@
  7. All nodes of the solid elements must be connected to other shells or solid elements, secondary nodes of rigid body (/RBODY) or secondary nodes of tied interface (/INTER/TYPE2).