/ANIM/BRICK/DAMA

Engine Keyword Generates animation files containing damage value as function of a solid element integration point. The damage value is the maximum of damage over time and of all failure criteria acting in one material.

Format

/ANIM/BRICK/DAMA/Keyword4

Definition

Field Contents SI Unit Example
Keyword4 Integration Point Number:
0 or blank
Maximum integration point value in the element is output.
i, j, k
Value in integration Point of brick element.
i
Integration point number in direction r.
j
Integration point number in direction s.
k
Integration point number in direction t.

1. If the integration point ijk does not exist in a solid, damage value is set to 0.
2. If j is greater than or equal to 10 (in case of /PROP/TYPE22 (TSH_COMP)), syntax becomes:
• /ANIM/BRICK/DAMA/i0k/j
• With 10 ≤ j ≤ 200
3. The damage value, D is 0 ≤ D ≤ 1. The status for fracture is:
• Damage occurs, if 0 ≤ D < 1
• Failure, if D = 1
4. D is computed for every failure criteria as follows:
• Strain-based failure (/FAIL/BIQUAD):
$D=\sum \frac{\text{Δ}{\epsilon }_{p}}{{\epsilon }_{f}}$
• Johnson-Cook failure (/FAIL/JOHNSON):
$D=\sum \frac{\mathrm{\text{Δ}}{\varepsilon }_{p}}{{\varepsilon }_{f}}$
• Cockcroft Latham failure (/FAIL/COCKCROFT):
$D=\frac{\sum \mathrm{max}\left({\sigma }_{1},0\right)\cdot \text{Δ}{\epsilon }_{p}}{C0}$
• Tuler-Butcher failure (/FAIL/TBUTCHER):
$D=\frac{{\underset{0}{\overset{t}{\int }}\left(\sigma -{\sigma }_{r}\right)}^{\lambda }dt}{K}$
• Wilkins failure (/FAIL/WILKINS):
$D=\frac{\int {W}_{1}{W}_{2}d{\overline{\epsilon }}_{p}}{{D}_{f}}$
• BAO-XUE-Wierzbicki failure (/FAIL/WIERZBICKI):
$D=\sum \frac{\text{Δ}{\epsilon }_{p}}{{\overline{\epsilon }}_{f}}$
• Strain failure model (/FAIL/TENSSTRAIN):
$D=\underset{\mathit{time}}{\mathit{Max}}\left(\frac{{\varepsilon }_{1}-{\varepsilon }_{{t}_{1}}}{{\varepsilon }_{{t}_{2}}-{\varepsilon }_{{t}_{1}}}\right)$
• Energy density failure model (/FAIL/ENERGY):
$D=\underset{time}{Max}\left(\frac{E-{E}_{1}}{{E}_{2}-{E}_{1}}\right)$
• Hashin Composite failure (/FAIL/HASHIN) - the maximum damage for different failure mode:
• for uni-directional lamina mode
$D=Max\left({F}_{1},{F}_{2},{F}_{3},{F}_{4},{F}_{5}\right)$
• for fabric lamina model
$D=Max\left({F}_{1},{F}_{2},{F}_{3},{F}_{4},{F}_{5},{F}_{6},{F}_{7}\right)$
• Puck Composite failure (/FAIL/PUCK) - the maximum damage for different failure mode:
$D=\mathit{Max}\left({e}_{f}\left(\mathit{tensile}\right),{e}_{f}\left(\mathit{compression}\right),{e}_{f}\left(\mathit{ModeA}\right),{e}_{f}\left(\mathit{ModeB}\right),{e}_{f}\left(\mathit{ModeC}\right)\right)$
$\stackrel{˙}{d}=\frac{k}{a}\left[1-\mathrm{exp}\left(-a〈w\left(Y\right)-d〉\right)\right]$
• Strain Failure Model with dependence on Lode angle (/FAIL/TAB1)
$D=\frac{\sum \mathrm{\text{Δ}}D}{{D}_{crit}}$
• Spalling and Johnson-Cook failure (/FAIL/SPALLING):
$D=\sum \frac{\mathrm{\text{Δ}}{\varepsilon }_{p}}{{\overline{\varepsilon }}_{f}}$
$D=\frac{k}{a}\left[1-{e}^{\left(-a〈w\left(Y\right)-d〉\right)}\right]$
• Failure According (Normal and Tangential) Displacement Criteria and/or Energy Criteria (/FAIL/CONNECT):
$D=\underset{\mathit{time}}{\mathit{Max}}\left(\frac{{D}_{max}}{{T}_{max}}\right)$
• Failure According Plastic Displacement Criteria (/FAIL/SNCONNECT):
$D=\underset{\mathit{time}}{\mathit{Max}}\left(\frac{{\overline{u}}^{\mathit{pl}}-{\overline{u}}_{0}{}^{\mathit{pl}}}{{\overline{u}}_{f}{}^{\mathit{pl}}-{\overline{u}}_{0}{}^{\mathit{pl}}}\right)$
• Extended Mohr Coulomb failure model (/FAIL/EMC):
$D=\underset{time}{Max}\left(\sum \frac{\text{Δ}{\overline{\epsilon }}_{p}}{{\overline{\epsilon }}_{p,fail}}\right)$