- Single-Phase Nucleate Boiling in a Rectangular Channel
In this application, AcuSolve is used to simulate the wall heat flux due to nucleate boiling at a heated wall inside a rectangular channel with water flow. Results are compared with experimental heat flux measurements as reported by Steiner, et al. (2005). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model single phase nucleate boiling problems.
- Turbulent Flow Through a Pipe
In this application, turbulent flow of air through a pipe is simulated. AcuSolve results are compared with experimental results as described in White (1991) and extracted from the Moody chart. The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model turbulent flow within pipes.
- Turbulent Flow Behind an Open-Slit V
In this application, AcuSolve is used to simulate turbulent flow of air through and behind a two dimensional open-slit V. AcuSolve results are compared with experimental results adapted from Yang and Tsai (1993). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model the Coandă effect.
- Turbulent Flow with Separation in an Asymmetric Diffuser
In this application, AcuSolve is used to simulate fully developed turbulent flow through an asymmetric diffuser with a divergent lower wall and a straight upper wall. AcuSolve results are compared with experimental results as described in Buice and Eaton (2000). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with internal turbulent flow with flow separation and reattachment in an asymmetric diffuser.
- Turbulent Flow Over a Backward-Facing Step
In this application, AcuSolve is used to simulate fully developed turbulent flow over a backward-facing step. AcuSolve results are compared with experimental results as described in Driver (1985) and on the NASA Langley Research Center Turbulence Modeling Resource web page. The close agreement of AcuSolve results with experimental data and reference turbulence model performance validates the ability of AcuSolve to model cases with turbulent flow that forms a shear layer, recirculates and then reattaches downstream of the divergent step.
- Turbulent Flow Past a Convex Curve in a Channel
In this application, AcuSolve is used to simulate fully developed turbulent flow through a channel containing a convex curve in the lower wall. AcuSolve results are compared with experimental results as described in Smits (1979) and on the NASA Langley Research Center Turbulence Modeling Resource webpage. The close agreement of AcuSolve results with experimental data and reference turbulence model performance validates the ability of AcuSolve to model cases with turbulent flow moving past a convex curved wall.
- Turbulent Natural Convection Inside a Tall Cavity
In this application, AcuSolve is used to simulate the natural convection of a turbulent flow field within a tall rectangular cavity. AcuSolve results are compared with experimental results as described in Betts and Bokhari (2000). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with natural convection of turbulent flow within a tall cavity.
- Turbulent Flow Over a NACA 0012 Airfoil
In this application, AcuSolve is used to simulate turbulent flow of a fluid over a NACA 0012 airfoil at 3 angles of attack, 0 degrees, 10 degrees, and 15 degrees. AcuSolve results are compared with experimental results for coefficients of pressure, lift, and drag reported by NASA. The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model external aerodynamics.
- Turbulent Flow Through a 180 Degree Curved Channel
In this application, AcuSolve is used to simulate turbulent flow through a strongly curved two dimensional 180 degree U-duct channel. AcuSolve results are compared with experimental results adapted from Rumsey et al. (2000). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model turbulent cases with strong curvature effects.
- Turbulent Flow Through a Wavy Channel
In this application, AcuSolve is used to simulate turbulent flow through a channel with a lower wall shaped as a sinusoidal wave. AcuSolve results are compared with experimental results adapted from Kuzan (1986). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with internal flow through a channel with wavy walls.
- Turbulent Flow Through a Heated Periodic Channel
In this application, AcuSolve is used to solve for the flow and temperature field within a channel containing a heated wall. The wall is maintained at a constant temperature, inducing heat flux into the fluid, to predict the thermal law of the wall. The non-dimensional temperature versus the non-dimensional height above the wall is compared to the analytical correlation provided by Kader.
- Turbulent Mixing Layers in an Open Channel
In this application, AcuSolve is used to simulate the mixing of two streams of fluid with different velocities moving past a splitter plate. AcuSolve results are compared with experimental results as described in J. Delville, et al. (1989). The close agreement of AcuSolve results with the experimental results validates the ability of AcuSolve to model mixing layers in the turbulent flow regime.
- Two-Phase Nucleate Boiling in a Cylindrical Pipe
In this application, AcuSolve is used to simulate the changes in wall temperature due to two-phase nucleate boiling at the heated walls of a pipe with water flowing through it. AcuSolve results are compared with experimental results adapted from Koncar and others (2015). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model two-phase nucleate boiling problems.
- Supersonic Flow Through a Converging-Diverging Nozzle
In this application, AcuSolve is used to simulate the high-speed turbulent flow in a converging and then diverging nozzle. The flow within the nozzle enters as subsonic, reaches sonic at the throat and shortly after develops a normal shock. AcuSolve results are compared with experimental results adapted from Bogar and Sajben (1983). The close agreement of AcuSolve results to experimental measurements validates the ability of AcuSolve to simulate internal supersonic flows where normal shocks are present.
- Turbulent Flow Past a Wall-Mounted Hump
In this application, AcuSolve is used to simulate fully developed turbulent flow past a smooth hump on the lower wall of a flow domain. AcuSolve results are compared with experimental results as described in Seifert and Pack (2002) and on the NASA Langley Research Center Turbulence Modeling Resource web page. The close agreement of AcuSolve results with experimental data and reference turbulence model performance validates the ability of AcuSolve to model cases with turbulent flow moving past a wall protrusion resulting in flow separation and recovery.
- Turbulent Flow Over an Oscillating Rigid Body Assembly
In this application, AcuSolve is used to simulate the fluid-structure interaction of a fluid moving over a cylinder/plate assembly. AcuSolve results are compared with experimental results as described in Gomes and Lienhart (2009). The close agreement of AcuSolve results with the experimental results validates the ability of AcuSolve to model cases in which the fluid forces lead to structural motions.