- Natural Convection in a Concentric Annulus
In this application, AcuSolve is used to simulate natural convection in the annular space between a heated inner pipe and an outer concentric pipe. AcuSolve results are compared with experimental results adapted from Kuehn and Goldstein (1978). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with flow induced by natural convection.
- Laminar Flow Through a Channel with Heated Walls
In this application, AcuSolve is used to simulate high Peclet number laminar flow through a channel with heated walls. AcuSolve results are compared with analytical results adapted from Hua and Pillai (2010). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases involving heat transfer to a moving fluid with a high Peclet number.
- Laminar Flow Through a Pipe with Constant Wall Temperature
In this application, AcuSolve is used to simulate the flow of mercury through a heated pipe. The AcuSolve results are compared with analytical results for pressure drop as described in White (1991), and with temperature changes as described in Incropera and DeWitt (1981). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with flow and imposed temperature constraints.
- Laminar Flow Through a Pipe With Imposed Heat Flux
In this application, AcuSolve is used to simulate the flow of mercury through a heated pipe. The AcuSolve results are compared with analytical results for pressure drop as described in White (1991), and with temperature changes as described in Incropera and DeWitt (1981). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with flow and imposed heat flux.
- Turbulent Natural Convection Inside a Tall Cavity
In this application, AcuSolve is used to simulate the natural convection of a turbulent flow field within a tall rectangular cavity. AcuSolve results are compared with experimental results as described in Betts and Bokhari (2000). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model cases with natural convection of turbulent flow within a tall cavity.
- Viscous Heating Inside a Rotating Annulus
In this application, AcuSolve is used to simulate fluid flow and viscous heating in an annulus formed by concentric cylinders. AcuSolve results are compared with analytical results adapted from Bird and others (1960). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with viscous heating.
- Heat Transfer Between Radiating Concentric Cylinders
In this application, AcuSolve is used to simulate the heat transfer due to radiation between concentric cylinders. The inner and outer cylinders are held at constant temperature and are defined to be radiation surfaces. AcuSolve results are compared with analytical results for temperature as described in Incropera (2006). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with radiation heat transfer requiring view factor computation.
- Heat Transfer Between Radiating Concentric Spheres
In this application, AcuSolve is used to simulate the heat transfer due to conduction and radiation between concentric spheres. The inside surface of the inner and the outside surface of the outer sphere are both held at constant temperature, while the gap between them radiates the heat from one sphere to the other.
- Two-Phase Nucleate Boiling in a Cylindrical Pipe
In this application, AcuSolve is used to simulate the changes in wall temperature due to two-phase nucleate boiling at the heated walls of a pipe with water flowing through it. AcuSolve results are compared with experimental results adapted from Koncar and others (2015). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model two-phase nucleate boiling problems.
- Single-Phase Nucleate Boiling in a Rectangular Channel
In this application, AcuSolve is used to simulate the wall heat flux due to nucleate boiling at a heated wall inside a rectangular channel with water flow. Results are compared with experimental heat flux measurements as reported by Steiner, et al. (2005). The close agreement of AcuSolve results with experimental results validates the ability of AcuSolve to model single phase nucleate boiling problems.
- Supersonic Flow Through a Converging-Diverging Nozzle
In this application, AcuSolve is used to simulate the high-speed turbulent flow in a converging and then diverging nozzle. The flow within the nozzle enters as subsonic, reaches sonic at the throat and shortly after develops a normal shock. AcuSolve results are compared with experimental results adapted from Bogar and Sajben (1983). The close agreement of AcuSolve results to experimental measurements validates the ability of AcuSolve to simulate internal supersonic flows where normal shocks are present.
- Ideal Gas Compression in an Actuating Piston
In this application, AcuSolve is used to simulate pressure and temperature inside an actuating piston using the ideal gas relationship and fully defined mesh motion. AcuSolve results are compared with analytical results as described in Moran and Shapiro (2000). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with material properties defined by the ideal gas law subjected to significant mesh distortion.
- Turbulent Flow Through a Heated Periodic Channel
In this application, AcuSolve is used to solve for the flow and temperature field within a channel containing a heated wall. The wall is maintained at a constant temperature, inducing heat flux into the fluid, to predict the thermal law of the wall. The non-dimensional temperature versus the non-dimensional height above the wall is compared to the analytical correlation provided by Kader.
- Laminar Couette Flow with Imposed Pressure Gradient and Heated Walls
In this application, AcuSolve is used to simulate the flow of a highly viscous fluid between a moving and a stationary plate with an imposed pressure gradient and fixed temperature on the walls. AcuSolve results are compared with analytical results described in White (1991). The close agreement of AcuSolve results with analytical results validates the ability of AcuSolve to model cases with imposed pressure gradients and viscous heating.