动力学

可以使用 SimSolid 动力学分析实时评估设计。

设置

  1. 指定分析所关联的模态结果。模态解必须存在于当前设计研究中。在 SimSolid 中,运动方程的时间积分极快,且所有模态都包含在分析中。
  2. 为频率响应和随机响应指定频率跨度的上限和下限。为瞬态响应指定时间跨度
  3. 对于响应谱分析,请指定模态组合类型。如果选择 CQC 方式,则需要设置阻尼比。
  4. 使用 Rayleigh 阻尼系数或模态阻尼来指定阻尼。
  5. 选择求解期间评估峰值响应复选框,以评估求解阶段的峰值响应。

更多信息请参阅 创建分析

阻尼

支持两种指定阻尼的方法。
Rayleigh 阻尼系数
假设阻尼矩阵与质量矩阵和刚度矩阵成正比。要使用此方法,需要在动力学创建对话框中指定质量 (F1) 和刚度 (F2) 的值。
模态阻尼
为每种模式创建临界阻尼比。可以在动力学分析创建对话框中指定该值。

动力学分析注意事项

  1. 当基本激励类型为位移时,位移和速度的初始条件始终假设为零。
  2. SimSolid 中,边界兼容性近似满足。约束端的响应不会绝对为零,但与峰值响应相比相对较小。
  3. 等效辐射功率密度的计算方法为:
    ERP 密度 = ERPRLF * (0 .5 * ERPC * ERPRHO) * v 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaabk facaqGqbGaaGjbVlaabseacaqGLbGaaeOBaiaabohacaqGPbGaaeiD aiaabMhacaaMc8UaaeypaiaaykW7caqGfbGaaeOuaiaabcfacaqGsb GaaeitaiaabAeacaaMc8UaaeOkaiaaykW7caqGOaGaaeimaiaab6ca caqG1aGaaGPaVlaabQcacaaMc8UaaeyraiaabkfacaqGqbGaae4qai aaykW7caqGQaGaaGPaVlaabweacaqGsbGaaeiuaiaabkfacaqGibGa ae4taiaabMcacaaMc8UaaiOkaiaaykW7caWG2bWaaWbaaSqabeaaca aIYaaaaaaa@6594@
    其中,
    v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36EE@
    拾取点的法向速度
    ERPC(声音在空气中的速度)
    343 m/s
    ERPRHO(空气密度)
    1.225 Kg/m3
    ERPRLF(辐射损失系数)
    1

    计算等效辐射功率就是计算拾取面上的 ERP 密度的积分,如图所示:

    ERP = ERPRLF * (0 .5 * ERPC * ERPRHO) S v 2 d s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaabk facaqGqbGaaGPaVlaab2dacaaMc8UaaeyraiaabkfacaqGqbGaaeOu aiaabYeacaqGgbGaaGPaVlaabQcacaaMc8UaaeikaiaabcdacaqGUa GaaeynaiaaykW7caqGQaGaaGPaVlaabweacaqGsbGaaeiuaiaaboea caaMc8UaaeOkaiaaykW7caqGfbGaaeOuaiaabcfacaqGsbGaaeisai aab+eacaqGPaGaaGPaVlabgUIiYpaaBaaaleaacaWGtbaabeaakiaa yIW7caWG2bWaaWbaaSqabeaacaaIYaaaaOGaaGjcVlaadsgacaWGZb aaaa@633F@
  4. 绝对位移的相位可以使用频率动力学的拾取信息进行查询。
  5. 频率动力学中的相对位移和绝对位移之间的关系如下。

    相对运动计算为:

    x ¨ + 2 ζ ω n x ˙ + ω n 2 = b ¨ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaada GaaGPaVlabgUcaRiaaykW7caaIYaGaeqOTdONaeqyYdC3aaSbaaSqa aiaad6gaaeqaaOGabmiEayaacaGaaGPaVlabgUcaRiaaykW7cqaHjp WDdaWgaaWcbaGaamOBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaaM c8Uaeyypa0JaaGPaVlabgkHiTiqadkgagaWaaaaa@4F42@

    其中基础激励 b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DA@ 为:

    b ¨ = Y 0 ω e i ω t + ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iabm OyayaadaGaaGPaVlabg2da9iaaykW7caWGzbWaaSbaaSqaaiaaicda aeqaaOWaaeWaaeaacqaHjpWDaiaawIcacaGLPaaacaWGLbWaaWbaaS qabeaacaWGPbWaaeWaaeaacqaHjpWDcaWG0bGaaGPaVlabgUcaRiaa ykW7cqaHvpGzaiaawIcacaGLPaaaaaaaaa@4D25@

    求解这个微分方程,相对位移可以计算为:

    x r t = Y 0 ω e i ϕ ω n 2 ω 2 ω n 2 ω 2 2 + 2 ζ ω n ω 2 i 2 ζ ω n ω ω n 2 ω 2 2 + 2 ζ ω n ω 2 e i ω t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGYbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaa ykW7cqGH9aqpcaaMc8UaamywamaaBaaaleaacaaIWaaabeaakmaabm aabaGaeqyYdChacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaamyA aiabew9aMbaakiaaykW7daqadaqaamaalaaabaGaeqyYdC3aaSbaaS qaaiaad6gaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaaGPaVlabgkHi TiaaykW7cqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaadaqadaqaai abeM8a3naaBaaaleaacaWGUbaabeaakmaaCaaaleqabaGaaGOmaaaa kiaaykW7cqGHsislcaaMc8UaeqyYdC3aaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGPaVlabgUca RiaaykW7daqadaqaaiaaikdacqaH2oGEcqaHjpWDdaWgaaWcbaGaam OBaaqabaGccqaHjpWDaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaaaaOGaaGPaVlabgkHiTiaaykW7caWGPbWaaSaaaeaacaaIYaGaeq OTdONaeqyYdC3aaSbaaSqaaiaad6gaaeqaaOGaeqyYdChabaWaaeWa aeaacqaHjpWDdaWgaaWcbaGaamOBaaqabaGcdaahaaWcbeqaaiaaik daaaGccaaMc8UaeyOeI0IaaGPaVlabeM8a3naaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaykW7cq GHRaWkcaaMc8+aaeWaaeaacaaIYaGaeqOTdONaeqyYdC3aaSbaaSqa aiaad6gaaeqaaOGaeqyYdChacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaaaaaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiaadMga cqaHjpWDcaWG0baaaaaa@9C3E@

    注: 通过将相对运动与基础激励相加来计算绝对运动。
  6. 在频率动力学和随机动力学中,复变函数法用于求解微分方程。位移、速度和加速度结果具有复数分量。

    已知位移的复数值为:

    D x = a x + i b x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWG4baabeaakiaaykW7cqGH9aqpcaaMc8UaamyyamaaBaaa leaacaWG4baabeaakiaaykW7cqGHRaWkcaaMc8UaamyAaiaadkgada WgaaWcbaGaamiEaaqabaaaaa@451A@
    D y = a y + i b y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWG5baabeaakiaaykW7cqGH9aqpcaaMc8UaamyyamaaBaaa leaacaWG5baabeaakiaaykW7cqGHRaWkcaaMc8UaamyAaiaadkgada WgaaWcbaGaamyEaaqabaaaaa@451D@
    D z = a z + i b z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWG6baabeaakiaaykW7cqGH9aqpcaaMc8UaamyyamaaBaaa leaacaWG6baabeaakiaaykW7cqGHRaWkcaaMc8UaamyAaiaadkgada WgaaWcbaGaamOEaaqabaaaaa@4520@

    位移大小的计算为:

    D x 2 + D x 2 + D x 2 = D x 2 + D x 2 + D x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada GcaaqaaiaadseadaWgaaWcbaGaamiEaaqabaGcdaahaaWcbeqaaiaa ikdaaaGccaaMc8Uaey4kaSIaaGPaVlaadseadaWgaaWcbaGaamiEaa qabaGcdaahaaWcbeqaaiaaikdaaaGccaaMc8Uaey4kaSIaaGPaVlaa dseadaWgaaWcbaGaamiEaaqabaGcdaahaaWcbeqaaiaaikdaaaaabe aaaOGaay5bSlaawIa7aiaaykW7cqGH9aqpcaaMc8+aaOaaaeaadaab daqaaiaadseadaWgaaWcbaGaamiEaaqabaGcdaahaaWcbeqaaiaaik daaaGccaaMc8Uaey4kaSIaaGPaVlaadseadaWgaaWcbaGaamiEaaqa baGcdaahaaWcbeqaaiaaikdaaaGccaaMc8Uaey4kaSIaaGPaVlaads eadaWgaaWcbaGaamiEaaqabaGcdaahaaWcbeqaaiaaikdaaaaakiaa wEa7caGLiWoaaSqabaGccaaMc8oaaa@638D@

  7. 当瞬态动力学分析与预应力模态分析相关联时,会提供一种新结果类型,成为总位移。总位移是预应力位移和动态位移的组合。因此,位移大小是由动态分析引起的位移。
  8. 对于随机响应分析,响应的功率谱密度 (PSD) S x o ( f ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWG4bGaam4BaaqabaGccaGGOaGaamOzaiaacMcaaaa@3B36@ ,与源的功率谱密度 S a ( f ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGHbaabeaakiaacIcacaWGMbGaaiykaaaa@3A2B@ 有关,为:
    S x o ( f ) = H x a ( f ) 2 S a ( f ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWG4bGaam4BaaqabaGccaGGOaGaamOzaiaacMcacqGH9aqp daabdaqaaiaadIeadaWgaaWcbaGaamiEaiaadggaaeqaaOGaaiikai aadAgacaGGPaaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaOGa am4uamaaBaaaleaacaWGHbaabeaakiaacIcacaWGMbGaaiykaaaa@49B3@
    其中, H x a ( f ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWG4bGaamyyaaqabaGccaGGOaGaamOzaiaacMcaaaa@3B1D@ 为频率函数。

    为了更好地理解,我们来举个例子,将以加速度为激励类型的基础激励作为随机响应分析的输入。

    带振幅的基础激励用于定义频率响应分析的输入,因此加速度激励类型的单位可以是下面突出显示的任何单位:m/sec2、mm/sec2、cm/sec2、G、in/sec2

    功率谱密度函数的单位取决于边界条件。在本例中,由于基础激励作为加速度给出,功率谱密度的单位为 (mm/s2)2/Hz。
    1.