OS-V: 0085 Plane Strain: Analysis of Pressure Vessel

This problem examines the expansion of a pressure vessel due to an internal pressure.

The plane strain formulation assumes that the strains in the plane perpendicular to the axis (or simply out-of-plane) are zero or irrelevant.
Figure 1.


Model Files

Before you begin, copy the file(s) used in this problem to your working directory.

When running a CAE analysis, using the plane strain assumption can lead to considerable savings in computational time and file storage. The simplification to a 2D mesh allows you to use a finer mesh resulting in a more accurate analysis than a coarsely 3D meshed full model. A typical example of plane strain application is for the analysis of pressure vessels.

The following example examines the expansion of a pressure vessel due to internal pressure. The OptiStruct results for principal stresses and the theoretical values for principal stresses are compared.
Figure 2. Model


Benchmark Model

Plane Strain elements are used to model the quarter symmetric slice of the pressure vessel with a radius of 100 mm and thickness of 20 mm. The internal pressure of 10 MPa is applied on the nodes of the inner surface of the pressure vessel and a Linear Static analysis is performed.

The following is required for model setup:
  1. The model must be in the XY or XZ plane, meaning for the XY plane all nodes must have Z coordinates equal to zero and for the XZ plane all Y coordinates are zero.
  2. All element normals are pointed in the positive Z or Y direction.
    Figure 3.


  3. CTPSTN and CQPSTN are used as the element property.
  4. PPLANE is used as the card image for the property.
  5. The 10 MPa load is applied using PLOADE1 type and selecting the internal edge of the model.
For thick-walled cylinders, stresses can be expressed as:
Circumferential Direction - Hoop Stress σ c = p i r i 2 p o r o 2 r o 2 r i 2 r i 2 r o 2 ( p o p i ) r 2 ( r o 2 r i 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiabeo8aZnaaBaaale aacaWGJbaabeaakiaaykW7cqGH9aqpcaaMc8+aaSaaaeaacaWGWbWa aSbaaSqaaiaadMgaaeqaaOGaamOCamaaDaaaleaacaWGPbaabaGaaG OmaaaakiaaykW7cqGHsislcaaMc8UaamiCamaaBaaaleaacaWGVbaa beaakiaadkhadaqhaaWcbaGaam4BaaqaaiaaikdaaaaakeaacaWGYb Waa0baaSqaaiaad+gaaeaacaaIYaaaaOGaaGPaVlabgkHiTiaaykW7 caWGYbWaa0baaSqaaiaadMgaaeaacaaIYaaaaaaakiaaykW7cqGHsi slcaaMc8+aaSaaaeaacaWGYbWaa0baaSqaaiaadMgaaeaacaaIYaaa aOGaamOCamaaDaaaleaacaWGVbaabaGaaGOmaaaakiaacIcacaWGWb WaaSbaaSqaaiaad+gaaeqaaOGaaGPaVlabgkHiTiaaykW7caWGWbWa aSbaaSqaaiaadMgaaeqaaOGaaiykaaqaaiaadkhadaahaaWcbeqaai aaikdaaaGccaGGOaGaamOCamaaDaaaleaacaWGVbaabaGaaGOmaaaa kiaaykW7cqGHsislcaaMc8UaamOCamaaDaaaleaacaWGPbaabaGaaG OmaaaakiaacMcaaaaaaa@73A5@
Radial Direction σ r = p i r i 2 p o r o 2 r o 2 r i 2 + r i 2 r o 2 ( p o p i ) r 2 ( r o 2 r i 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiabeo8aZnaaBaaale aacaWGYbaabeaakiaaykW7cqGH9aqpcaaMc8+aaSaaaeaacaWGWbWa aSbaaSqaaiaadMgaaeqaaOGaamOCamaaDaaaleaacaWGPbaabaGaaG OmaaaakiaaykW7cqGHsislcaaMc8UaamiCamaaBaaaleaacaWGVbaa beaakiaadkhadaqhaaWcbaGaam4BaaqaaiaaikdaaaaakeaacaWGYb Waa0baaSqaaiaad+gaaeaacaaIYaaaaOGaaGPaVlabgkHiTiaaykW7 caWGYbWaa0baaSqaaiaadMgaaeaacaaIYaaaaaaakiaaykW7cqGHRa WkcaaMc8+aaSaaaeaacaWGYbWaa0baaSqaaiaadMgaaeaacaaIYaaa aOGaamOCamaaDaaaleaacaWGVbaabaGaaGOmaaaakiaacIcacaWGWb WaaSbaaSqaaiaad+gaaeqaaOGaaGPaVlabgkHiTiaaykW7caWGWbWa aSbaaSqaaiaadMgaaeqaaOGaaiykaaqaaiaadkhadaahaaWcbeqaai aaikdaaaGccaGGOaGaamOCamaaDaaaleaacaWGVbaabaGaaGOmaaaa kiaaykW7cqGHsislcaaMc8UaamOCamaaDaaaleaacaWGPbaabaGaaG OmaaaakiaacMcaaaaaaa@73A9@
Where,
σ c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiabeo8aZnaaBaaale aacaWGJbaabeaaaaa@376C@
Stress in circumferential direction (MPa, psi).
σ r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiabeo8aZnaaBaaale aacaWGYbaabeaaaaa@377B@
Stress in radial direction (MPa, psi).
p i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadchadaWgaaWcba GaamyAaaqabaaaaa@36A4@
Internal pressure in the tube or cylinder (MPa, psi).
p o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadchadaWgaaWcba Gaam4Baaqabaaaaa@36AA@
External pressure in the tube or cylinder (MPa, psi).
r i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadkhadaWgaaWcba GaamyAaaqabaaaaa@36A6@
Internal radius of tube or cylinder (mm, in).
r o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadkhadaWgaaWcba Gaam4Baaqabaaaaa@36AC@
External radius of tube or cylinder (mm, in).
r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadkhaaaa@358C@
Cylinder wall radius where stress is calculated (mm, in) ( r i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadkhadaWgaaWcba GaamyAaaqabaaaaa@36A6@ < r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadkhaaaa@358C@ < r o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbwvMCKfMBHbqee0evGueE0jxy aibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaabiWacqaaaOqaaiaadkhadaWgaaWcba Gaam4Baaqabaaaaa@36AC@ ).

Linear Static Analysis Results

Model Hoop Stress

(Pa)

Radial Stress

(Pa)

Theoretical 55455 -10000
OptiStruct 54710 -9205.6
Normalized 1.013 1.086
Figure 4. First Principle Stress (Hoop Stress)


Figure 5. Third Principle Stress (Radial Stress)


1
1 MacDonald, Bryan J., "Practical Stress Analysis with Finite Elements" (2nd Ed), page 327-329