Integrated Beam Elements (TYPE 18)

Beam type /PROP/TYPE18 uses a shear beam theory or Timoshenko formulation like /PROP/TYPE3, but the section inputs (area, inertia) can be default values and can also be discretized by sub-sections; numerical integrations are used to calculate internal forces.

The /PROP/TYPE18 formulation also assumes that the internal virtual work rate is associated with the axial, torsional and shear strains. The other assumptions are:
  • No deformation of the cross-section in its plane.
  • No warping of the cross-section out of its plane

Using these assumptions, transverse shear is always considered.

Local Coordinate System

The properties describing a beam element are all defined in a local coordinate system.

This coordinate system is the same as /PROP/TYPE3 and can be seen in Figure 1. Nodes 1 and 2 of the element are used to define the local X axis, with the origin at node 1. The local Y axis is defined using node 3, which lies in the local XY plane, along with nodes 1 and 2. The Z axis is determined from the vector cross product of the positive X and Y axes.

In case Node 3 is not defined, Nodes 1 and 2 of the element are used to define the local X axis, with the origin at node 1. Local XY plane is defined using local X axis and Global Z axis (or Global Y axis, if local X is parallel to global Z). The local Y axis is determined from the vector cross product of the positive Z and X axes.

The local Y direction is first defined at time t = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9iaaicdaaaa@38AF@ and its position is updated at each cycle, taking into account the rotation of the X axis. The Z axis is always orthogonal to the X and Y axes.

Deformations are computed with respect to the local coordinate system displaced and rotated to take into account rigid body motion. Translational velocities V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D1@ and angular velocities Ω with respect to the global reference frame are expressed in the local frame.


Figure 1. Beam Element Local Axis

Beam Element Geometry

The five pre-defined standard sections can be used with input Isect:
= 1
Pre-defined rectangular section
= 2
Pre-defined circular section
= 3
Pre-defined rectangular section with Gauss-Lobatto quadrature
= 4
Pre-defined circular section with Gauss-Lobatto quadrature
= 5
Pre-defined circular section
Sub-sections can be used as input as well, in that case, moments of inertia and area, are computed by Radioss as:(1) A= A i = d y i d z i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbGaey ypa0ZaaabqaeaacaWGbbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Za aabqaeaadaqadaqaaiaadsgacaWG5bWaaSbaaSqaaiaadMgaaeqaaO GaaGPaVlaadsgacaWG6bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaaleqabeqdcqGHris5aaWcbeqab0GaeyyeIuoaaaa@486B@ (2) I Z = A i y i 2 + 1 12 d y i 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaadQfaaeqaaOGaeyypa0ZaaabqaeaacaWGbbWaaSbaaSqa aiaadMgaaeqaaOWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaO WaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGa aGymaiaaikdaaaGaaGPaVlaaykW7caWGKbGaamyEamaaBaaaleaaca WGPbaabeaakmaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaWc beqab0GaeyyeIuoaaaa@4C19@ (3) I Y = A i z i 2 + 1 12 d z i 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaadMfaaeqaaOGaeyypa0ZaaabqaeaacaWGbbWaaSbaaSqa aiaadMgaaeqaaOWaaeWaaeaacaWG6bWaaSbaaSqaaiaadMgaaeqaaO WaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGa aGymaiaaikdaaaGaaGPaVlaaykW7caWGKbGaamOEamaaBaaaleaaca WGPbaabeaakmaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaWc beqab0GaeyyeIuoaaaa@4C1A@

Minimum Time Step

The minimum time step for a beam element is determined using the following relation:(4) Δ t = a L c
Where,
c
Speed of sound, E / ρ
a = 1 + 2 d 2 2 d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2 da9maakaaabaGaaGymaiabgUcaRiaaikdacaWGKbWaaWbaaSqabeaa caaIYaaaaaqabaGccqGHsisldaGcaaqaaiaaikdaaSqabaGccaWGKb aaaa@3EDC@
d = max ( d m , d f ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iGac2gacaGGHbGaaiiEaiaaykW7caaMc8UaaiikaiaadsgadaWg aaWcbaGaamyBaaqabaGccaGGSaGaamizamaaBaaaleaacaWGMbaabe aakiaacMcaaaa@43F1@

Beam Element Behavior

The internal force and moment are computed in /PROP/TYPE18 by numerical integration as for a shell element, where each integration point i is computed: (5) ε ˙ x x = ε ˙ x x m y i X ˙ z + z i X ˙ y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaeyypa0JafqyTduMbaiaa daqhaaWcbaGaamiEaiaadIhaaeaacaWGTbaaaOGaeyOeI0IaamyEam aaBaaaleaacaWGPbaabeaakiqadIfagaGaamaaBaaaleaacaWG6baa beaakiabgUcaRiaadQhadaWgaaWcbaGaamyAaaqabaGcceWGybGbai aadaWgaaWcbaGaamyEaaqabaaaaa@49EB@ (6) ε ˙ y y = ε ˙ z z = 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamyEaiaadMhaaeqaaOGaeyypa0JafqyTduMbaiaa daWgaaWcbaGaamOEaiaadQhaaeqaaOGaeyypa0JaaGimaaaa@407F@ (7) ε ˙ x y = ε ˙ x y m + z i X ˙ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamiEaiaadMhaaeqaaOGaeyypa0JafqyTduMbaiaa daqhaaWcbaGaamiEaiaadMhaaeaacaWGTbaaaOGaey4kaSIaamOEam aaBaaaleaacaWGPbaabeaakiqadIfagaGaamaaBaaaleaacaWG4baa beaaaaa@44C2@ (8) ε ˙ x z = ε ˙ x z m y i X ˙ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamiEaiaadQhaaeqaaOGaeyypa0JafqyTduMbaiaa daqhaaWcbaGaamiEaiaadQhaaeaacaWGTbaaaOGaeyOeI0IaamyEam aaBaaaleaacaWGPbaabeaakiqadIfagaGaamaaBaaaleaacaWG4baa beaaaaa@44CE@
Where,
ε ˙ xx m ε ˙ xy m ε ˙ xz m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacu aH1oqzgaGaamaaDaaaleaacaWG4bGaamiEaaqaaiaad2gaaaGccaaM c8UaaGPaVlqbew7aLzaacaWaa0baaSqaaiaadIhacaWG5baabaGaam yBaaaakiaaykW7caaMc8UafqyTduMbaiaadaqhaaWcbaGaamiEaiaa dQhaaeaacaWGTbaaaaGccaGL7bGaayzFaaaaaa@4CCC@
Constant strain rate at local axis x
X ˙ x X ˙ y X ˙ z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaace WGybGbaiaadaWgaaWcbaGaamiEaaqabaGccaaMc8UaaGPaVlqadIfa gaGaamaaBaaaleaacaWG5baabeaakiaaykW7caaMc8Uabmiwayaaca WaaSbaaSqaaiaadQhaaeqaaaGccaGL7bGaayzFaaaaaa@449E@
Curvature rate
Using material constituent relation for the beam, the stress components σ x x σ x y σ x z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aHdpWCdaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaGPaVlaaykW7cqaH dpWCdaWgaaWcbaGaamiEaiaadMhaaeqaaOGaaGPaVlaaykW7cqaHdp WCdaWgaaWcbaGaamiEaiaadQhaaeqaaaGccaGL7bGaayzFaaaaaa@4A2C@ are obtained. The generalized stress (force, moment) can be easily computed by:(9) N x = A σ x x d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWG4baabeaakiabg2da9maapiaabaWaaSbaaSqaaiaadgea aeqaaaqabeqaniabgUIiYlabgUIiYdGccaaMc8Uaeq4Wdm3aaSbaaS qaaiaadIhacaWG4baabeaakiaaykW7caWGKbGaamyqaaaa@466F@ (10) N y = A σ x y d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWG5baabeaakiabg2da9maapiaabaWaaSbaaSqaaiaadgea aeqaaaqabeqaniabgUIiYlabgUIiYdGccaaMc8Uaeq4Wdm3aaSbaaS qaaiaadIhacaWG5baabeaakiaaykW7caWGKbGaamyqaaaa@4671@ (11) N z = A σ x z d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWG6baabeaakiabg2da9maapiaabaWaaSbaaSqaaiaadgea aeqaaaqabeqaniabgUIiYlabgUIiYdGccaaMc8Uaeq4Wdm3aaSbaaS qaaiaadIhacaWG6baabeaakiaaykW7caWGKbGaamyqaaaa@4673@ (12) M x = A y σ x z z σ x y d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG4baabeaakiabg2da9maapiaabaWaaSbaaSqaaiaadgea aeqaaaqabeqaniabgUIiYlabgUIiYdGcdaqadaqaaiaadMhacqaHdp WCdaWgaaWcbaGaamiEaiaadQhaaeqaaOGaeyOeI0IaamOEaiabeo8a ZnaaBaaaleaacaWG4bGaamyEaaqabaaakiaawIcacaGLPaaacaWGKb Gaamyqaaaa@4BC1@ (13) M y = A z σ x x d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG5baabeaakiabg2da9maapiaabaWaaSbaaSqaaiaadgea aeqaaaqabeqaniabgUIiYlabgUIiYdGccaaMc8UaamOEaiabeo8aZn aaBaaaleaacaWG4bGaamiEaaqabaGccaaMc8Uaamizaiaadgeaaaa@476E@ (14) M z = A y σ x x d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWG6baabeaakiabg2da9maapiaabaWaaSbaaSqaaiaadgea aeqaaaqabeqaniabgUIiYlabgUIiYdGccaaMc8UaeyOeI0IaamyEai abeo8aZnaaBaaaleaacaWG4bGaamiEaaqabaGccaaMc8Uaamizaiaa dgeaaaa@485B@