/SKEW/FIX
Block Format Keyword Describes the fixed skew frames.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/SKEW/FIX/skew_ID/unit_ID  
skew_title  
Ox  Oy  Oz  
X_{1}  Y_{1}  Z_{1}  
X_{2}  Y_{2}  Z_{2} 
Definition
Field  Contents  SI Unit Example 

skew_ID  Skew identifier This ID must be different from all frame (/FRAME/FIX) identifiers (Integer, maximum 10 digits) 

unit_ID  Unit identifier (Integer, maximum 10 digits) 

skew_title  Skew title (Character, maximum 100 characters) 

Ox  X coordinate of skew
origin O' (Real) 
$\left[\text{m}\right]$ 
Oy  Y coordinate of skew
origin O' (Real) 
$\left[\text{m}\right]$ 
Oz  Z coordinate of skew
origin O' (Real) 
$\left[\text{m}\right]$ 
X_{1}  X component of skew
$Y\text{'}$
axis (Real) 

Y_{1}  Y component of skew
$Y\text{'}$
axis (Real) 

Z_{1}  Z component of skew
$Y\text{'}$
axis (Real) 

X_{2}  X component of skew
$Z\text{'}$
axis (Real) 

Y_{2}  Y component of skew
$Z\text{'}$
axis (Real) 

Z_{2}  Z component of skew
$Z\text{'}$
axis (Real) 
Comments
 For fixed skews, the skew system is fixed and is defined by $Y\text{'}$ and $Z\text{'}$ . Vectors of arbitrary length may be given.
 For a fixed skew, inputs are
$Y\text{'}$
axis and
$Z\text{'}$
axis, but
${X}^{\prime}$
axis is computed as: $${X}^{\prime}=Y\text{'}\Lambda Z\text{'}$$
$Y\text{'}$ is recomputed as:
$${Y}^{\u2033}={Z}^{\prime}\Lambda {X}^{\prime}$$  The new fixed skew is defined by ${X}^{\prime}$ , ${Y}^{\u2033}$ and $Z\text{'}$ .
 The skew origin O' is useful when
defining some condition with respect to the skew in cylindrical coordinate system.