RD-V: 0700 Johnson-Cook Failure Criteria

The failure criteria by Johnson-Cook is evaluated with material LAW36 and LAW2.

Figure 1. Left: shell element; Right: hexahedron element


The subject of this analysis is to evaluate the Johnson-Cook failure criteria using a material LAW36 and LAW2.

The analysis is for 6 cases:
  • A square coupon modeled with shell elements /SHELL with /PROP/SHELL property and QEPH formulation (Ishell=24)
  • A square coupon modeled with sh3n elements /SH3N with /PROP/SHELL property and QEPH formulation (Ish3n=0)
  • A square coupon modeled with hexahedron elements /BRIC with /PROP/SOLID property and HEPH formulation (Isolid =24)
  • A square coupon modeled with hexahedron elements /BRIC with /PROP/TSHELL property and HSEPH formulation (Isolid =15)
  • A square coupon modeled with hexahedron degenerated elements /BRIC with /PROP/SOLID property and HEPH formulation (Isolid =24)
  • A square coupon modeled with tetrahedron elements /BRIC with /PROP/SOLID property and HEPH formulation (Itetra4 =3)

Options and Keywords

The following keywords are used in the models.

Model Files

Before you begin, copy the file(s) used in this problem to your working directory.

Model Description

Units: Kg, mm, ms, GPa

The boundary conditions are represented.
Figure 2. Boundary conditions


Material Law Characteristics
The material to be characterized is DP600 steel. The model is tested with different elements mentioned above with 10x10 mm side lengths.
Material Property
Values
Young's modulus
210 GPa
Poisson ratio
0.3
Density
7.8e-06 kg/mm3
  • LAW36
    The elasto-plastic behavior is defined using the tabulated material LAW36. The True Stress versus Plastic True Strain curve is used as an input of LAW36. For more information about the LAW36 material, refer to RD-E: 1101 Elasto-plastic Material Law Characterization in the Example Guide.
    Figure 3. True stress versus True strain


  • LAW2

    This law represents an isotropic elastoplastic material using the Johnson-Cook material model.

    The materiel LAW2 parameters yield stress “ a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbaaaa@36FD@ ”, Plastic hardening parameter “ b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbaaaa@36FE@ ” and Plastic hardening exponent “ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbaaaa@36FE@ ” have been defined. The true stress is calculated using:
    σ = ( a + b ε p n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCcqGH9aqpcaGGOaGaamyyaiabgUcaRiaadkgacqaH1oqz paWaa0baaSqaa8qacaWGWbaapaqaa8qacaWGUbaaaOGaaiykaaaa@40EC@
    Where,
    a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbaaaa@36FD@
    0.270 GPa
    b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbaaaa@36FE@
    0.75 GPa
    n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbaaaa@36FE@
    0.6
    The true stress versus true strain curve is represented below:
    Figure 4. Stress versus plastic strain curve LAW2


Johnson-Cook Failure

The Johnson-Cook failure model is defined using /FAIL/JOHNSON in the input. The model uses accumulative damages to compute failure:

D = Δ ε ε f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iabggHiLpaalaaapaqaa8qacqqHuoarcqaH1oqz a8aabaWdbiabew7aL9aadaWgaaWcbaWdbiaadAgaa8aabeaaaaaaaa@3FC7@ with ε f = max D 1 + D 2 * exp D 3   σ * 1 + D 4 ln ε ˙ ε 0 ˙   1 + D 5 T * ; E P S F m i n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa b2gacaqGHbGaaeiEamaabmaapaqaa8qadaWadaWdaeaapeGaamira8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaWGebWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiaacQcaciGGLbGaaiiEaiaacc hadaqadaWdaeaapeGaamira8aadaWgaaWcbaWdbiaaiodacaGGGcaa paqabaGcpeGaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaaakiaawI cacaGLPaaaaiaawUfacaGLDbaadaWadaWdaeaapeGaaGymaiabgUca RiaadseapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaciiBaiaac6 gadaqadaWdaeaapeWaaSaaa8aabaWdbiqbew7aL9aagaGaaaqaamaa xacabaWdbiabew7aL9aadaWgaaWcbaWdbiaaicdaa8aabeaaaeqaba WdbiaacMTaaaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiiO amaadmaapaqaa8qacaaIXaGaey4kaSIaamira8aadaWgaaWcbaWdbi aaiwdaa8aabeaak8qacaWGubWdamaaCaaaleqabaWdbiaacQcaaaaa kiaawUfacaGLDbaacaGG7aGaamyraiaadcfacaWGtbGaamOra8aada WgaaWcbaWdbiaad2gacaWGPbGaamOBaaWdaeqaaaGcpeGaayjkaiaa wMcaaaaa@7022@

Where, Δ ε MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaeqyTdugaaa@391A@ is the increment of plastic strain during a loading increment, σ * = σ m σ V M = p σ V M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaeq4Wdm3damaaBaaaleaapeGaamyBaaWdaeqaaaGcbaWdbi abeo8aZ9aadaWgaaWcbaWdbiaadAfacaWGnbaapaqabaaaaOWdbiab g2da9iabgkHiTmaalaaapaqaa8qacaWGWbaapaqaa8qacqaHdpWCpa WaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaaaaa@4816@ the normalized mean stress and the parameters D i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaamyAaaqabaaaaa@37D0@ the material constants. Failure is assumed to occur when D=1. The strain rate and thermo-plastic effects are not considered in this example. Only three parameters are required D 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaaGymaaqabaaaaa@379D@ , D 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaaGymaaqabaaaaa@379D@ and D 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaaGymaaqabaaaaa@379D@ .

The material constants can be calculated by using:

D 1 = ε f 0 D 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcqaH 1oqzpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeWaaeWaa8aabaWdbi aaicdaaiaawIcacaGLPaaacqGHsislcaWGebWdamaaBaaaleaapeGa aGOmaaWdaeqaaaaa@413F@
D 2 = ε f 1 / 3   ε f 0   e D 3 3 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbm aabmaapaqaa8qacaaIXaGaai4laiaaiodaaiaawIcacaGLPaaacaqG GcGaeyOeI0IaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbm aabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaeiOaaWdaeaapeGa amyza8aadaahaaWcbeqaa8qadaWccaWdaeaapeGaamira8aadaWgaa adbaWdbiaaiodaa8aabeaaaSqaa8qacaaIZaaaaaaakiabgkHiTiaa igdaaaaaaa@4EA0@
D 3 = 3 l n ε f 0   ε f 1 / 3   ε f 1 / 3   ε f 0   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaI ZaGaamiBaiaad6gadaWadaWdaeaapeWaaSaaa8aabaWdbiabew7aL9 aadaWgaaWcbaWdbiaadAgaa8aabeaak8qadaqadaWdaeaapeGaaGim aaGaayjkaiaawMcaaiaabckacqGHsislcqaH1oqzpaWaaSbaaSqaa8 qacaWGMbaapaqabaGcpeWaaeWaa8aabaWdbiaaigdacaGGVaGaaG4m aaGaayjkaiaawMcaaiaabckaa8aabaWdbiabew7aL9aadaWgaaWcba WdbiaadAgaa8aabeaak8qadaqadaWdaeaapeGaeyOeI0IaaGymaiaa c+cacaaIZaaacaGLOaGaayzkaaGaaeiOaiabgkHiTiabew7aL9aada WgaaWcbaWdbiaadAgaa8aabeaak8qadaqadaWdaeaapeGaaGimaaGa ayjkaiaawMcaaiaabckaaaaacaGLBbGaayzxaaaaaa@5DE2@

Where,
ε f 1 / 3 = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbmaabmaapaqa a8qacaaIXaGaai4laiaaiodaaiaawIcacaGLPaaacqGH9aqpcaaIWa GaaiOlaiaaiodaaaa@4015@
Pure tensile failure
ε f 0 = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbmaabmaapaqa aiaaicdaa8qacaGLOaGaayzkaaGaeyypa0JaaGimaiaac6cacaaI1a aaaa@3EA6@
Pure shear failure
ε f 1 3 = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbmaabmaapaqa aiabgkHiTmaaliaabaGaaGymaaqaaiaaiodaaaaapeGaayjkaiaawM caaiabg2da9iaaicdacaGGUaGaaGioaaaa@4066@
Pure compression failure
The ε f σ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabgkHiTiab eo8aZ9aadaahaaWcbeqaa8qacaGGQaaaaaaa@3CBD@ curve describes the material failure model using D 1 = 0.1   , D 2 = 0.6   a n d   D 3 = 1.2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcqGH sislcaaIWaGaaiOlaiaaigdacaGGGcGaaiilaiaadseapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGimaiaac6cacaaI2aGa aiiOaiaaysW7caWGHbGaamOBaiaadsgacaGGGcGaamira8aadaWgaa WcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcqGHsislcaaIXaGaaiOl aiaaikdaaaa@4FCB@ the Johnson-Cook failure model parameters calculated above.
Figure 5. ε f σ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabgkHiTiab eo8aZ9aadaahaaWcbeqaa8qacaGGQaaaaaaa@3CBD@ curve describing the material failure


Results

The Johnson-Cook failure criteria was evaluated with LAW2 and LAW36. As the results are similar between both material laws, only material LAW36 results are represented below.

Square coupon with SHELL elements
The following element formulation is evaluated:
  • /PROP/TYPE1 (SHELL), QEPH shell formulation Ishell=24, 5 integration points over the thickness.

    For each loading, the triaxiality and plastic strain curves are represented at failure.

Table 1. Results for SHELL QUAD element
Pure Tensile Pure Shear Pure Compression






As expected, the elements failed once they reached the plastic strain, then the stress decreases:
ε f = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure tensile
ε f = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure shear
ε f = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure compression
Square coupon with SH3N elements
The following element formulation is evaluated:
  • /PROP/TYPE1 (SHELL), QEPH shell formulation Ish3n=0, 5 integration points over the thickness.

    For each loading, the triaxiality and plastic strain curves are represented at failure.

Table 2. Results for SH3N element
Pure Tensile Pure Shear Pure Compression






As expected, the elements failed once they reached the plastic strain, then the stress decrease:
ε f = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure tensile
ε f = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure shear
ε f = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure compression
Cube coupon with Solid Hexahedron elements
The following element formulation is evaluated:
  • /PROP/TYPE14 (SOLID), Isolid =24.

    For each loading, the triaxiality and plastic strain curves are represented at failure.

Table 3. Results for Hexahedron element
Pure Tensile Pure Shear Pure Compression






As expected, the elements failed once they reached the plastic strain, then the stress decrease:
ε f = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure tensile
ε f = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure shear
ε f = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure compression
Cube coupon with TSHELL elements
The following element formulation is evaluated:
  • /PROP/TYPE20 (TSHELL), Isolid =15.

    For each loading, the triaxiality and plastic strain curves are represented at failure.

Table 4. Results for TSHELL element
Pure Tensile Pure Shear Pure Compression






As expected, the elements failed once they reached the plastic strain, then the stress decrease:
ε f = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure tensile
ε f = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure shear
ε f = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure compression
Cube coupon with Solid Hexahedron degenerated elements
The following element formulation is evaluated:
  • /PROP/TYPE14 (SOLID), Isolid =24.

    For each loading, the triaxiality and plastic strain curves are represented at failure.

Table 5. Results for HEXAHEDRON degenerated element
Pure Tensile Pure Shear Pure Compression






As expected, the elements failed once they reached the plastic strain, then the stress decrease:
ε f = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure tensile
ε f = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure shear
ε f = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure compression
Cube coupon with Solid Tetrahedron elements
The following element formulation is evaluated:
  • /PROP/TYPE14 (SOLID), Itetra4 =3.

    For each loading, the triaxiality and plastic strain curves are represented at failure.

Table 6. Results for TETRAHEDRON element
Pure Tensile Pure Shear Pure Compression






As expected, the elements failed once they reached the plastic strain, then the stress decrease:
ε f = 0.3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure tensile
ε f = 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure shear
ε f = 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iaa icdacaGGUaGaaG4maaaa@3C42@
Pure compression

Conclusion

This study highlights that the /FAIL/JOHNSON failure criteria implemented in Radioss behaves as expected. As soon as the element reaches the targeted failure plastic strain for a given triaxiality level, the element is eroded. This study was carried out with material LAW2 and material LAW36.