Tsai-Wu Criterion

The Tsai-Wu theory defines the ply failure index as below:

Findex=1XT1XCσ1+1YT1YCσ2+σ12XTXC+σ22YTYC+τ122S2+2F12σ1σ2 MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaamyAaiaad6gacaWGKbGaamyzaiaadIhaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGubaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGybWdamaaBaaaleaapeGaam4qaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacaqGdpWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamywa8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadMfapaWaaSbaaSqaa8qacaWGdbaapaqabaaaaaGcpeGaayjkaiaawMcaaiaabo8apaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSYaaSaaa8aabaWdbiaabo8apaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGybWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbiaadIfapaWaaSbaaSqaa8qacaWGdbaapaqabaaaaOWdbiabgUcaRmaalaaapaqaa8qacaqGdpWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaamywa8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaWGzbWdamaaBaaaleaapeGaam4qaaWdaeqaaaaak8qacqGHRaWkdaWcaaWdaeaapeGaaeiXd8aadaqhaaWcbaWdbiaaigdacaaIYaaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGtbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaaGOmaiaadAeapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiaabo8apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaae4Wd8aadaWgaaWcbaWdbiaa ikdaa8aabeaaaaa@763D@

Where:
  • Xt,Xc MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaamiDaiaacYcacaWGybGaam4yaaaa@3A5F@ are the maximum allowable stresses in the 1-direction in tension and compression,
  • Yt,Yc MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGzbGaamiDaiaacYcacaWGzbGaam4yaaaa@3A61@ are the maximum allowable stresses in the 2-direction in tension and compression,
  • S MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbaaaa@36EC@ is the allowable in-plane shear stress
  • F12 MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaaaaa@38B0@ is a factor to be determined experimentally

Syntax

TsaiWuFT(tensor,xt,xc,yt,yc,s,f12,sets,plies,elems,parts,props,pool_name,layer_index,opt_str)

Arguments

tensor
Stress table
xt
Allowable tensile stress in ply material direction 1
xc
Allowable compressive stress in ply material direction 1
yt
Allowable tensile stress in ply material direction 2
yc
Allowable compressive stress in ply material direction 2
f12
F12 experimental factor
s
Allowable in-plane shear stress
sets
Set table (D=NULL)
plies
Ply table (D=NULL)
elems
Element table (D)
parts
Part table (D)
props
Property table (D)
pool_name
Pool name (D=@current_pool)
layer_index
Layer index (D=@current_slice_index)
opt_str
This is an optional argument, which can passed if needed (D=option).

Tsai-Wu Reserve Factor

Considering the above expression for the Failure Index if we set:

A=σ12XTXC+σ22YTYC+τ122S2+2F12σ1σ2 MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGbbGaeyypa0ZaaSaaa8aabaWdbiaabo8apaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGybWdamaaBaaaleaapeGaaeivaaWdaeqaaOWdbiaabIfapaWaaSbaaSqaa8qacaqGdbaapaqabaaaaOWdbiabgUcaRmaalaaapaqaa8qacaqGdpWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaamywa8aadaWgaaWcbaWdbiaabsfaa8aabeaak8qacaqGzbWdamaaBaaaleaapeGaae4qaaWdaeqaaaaak8qacqGHRaWkdaWcaaWdaeaapeGaaeiXd8aadaqhaaWcbaWdbiaaigdacaaIYaaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGtbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaaGOmaiaadAeapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabeo8aZ9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqaHdpWCpaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@596E@

B=1XT1XCσ1+1YT1YCσ2 MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGcbGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGybWdamaaBaaaleaapeGaamivaaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaadoeaa8aabeaaaaaak8qacaGLOaGaayzkaaGaeq4Wdm3damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamywa8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadMfapaWaaSbaaSqaa8qacaWGdbaapaqabaaaaaGcpeGaayjkaiaawMcaaiabeo8aZ9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@5064@

C = 1 MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbGaaiiOaiabg2da9iaacckacqGHsislcaaIXaaaaa@3BD2@

Being k MathType@MTEF@5@5@+=feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbaaaa@3703@ a given factor of safety, then the reserve factor formula can be evaluated as below:

RFTsaiWu=B±B24AC2ak MathType@MTEF@5@5@+=feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGsbGaaeOra8aadaWgaaWcbaWdbiaadsfacaWGZbGaamyyaiaadMgacqGHsislcaWGxbGaamyDaaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacqGHsislcaWGcbGaeyySae7aaOaaa8aabaWdbiaadkeapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaisdacaWGbbGaam4qaaWcbeaaaOWdaeaapeGaaGOmaiaadggacaWGRbaaaaaa@4B6C@

Syntax

TsaiWuRF(tensor,xt,xc,yt,yc,s,f12,FoS,sets,plies,elems,parts,props,pool_name,layer_index,opt_str)

Arguments

tensor
Stress table
xt
Allowable tensile stress in ply material direction 1
xc
Allowable compressive stress in ply material direction 1
yt
Allowable tensile stress in ply material direction 2
yc
Allowable compressive stress in ply material direction 2
f12
F12 experimental factor
FoS
Factor of Safety (D=1.0)
s
Allowable in-plane shear stress
sets
Set table (D=NULL)
plies
Ply table (D=NULL)
elems
Element table (D)
parts
Part table (D)
props
Property table (D)
pool_name
Pool name (D=@current_pool)
layer_index
Layer index (D=@current_slice_index)
opt_str
This is an optional argument, which can passed if needed (D=option).