Define Preload, Offset and Scale

Select the Preload/Offset/Scale tab.
Note: The Preload default value = 0; The Offset default value = 0; and the Scale default value = 1.0. The same holds true for both translational and rotational directions.
 Enter the Preload Force X, Y and Z values as a real value. Positive preload (P_{k}) values act to attract the two bodies.
 Enter the Preload Torque X, Y and Z values as a real value. Positive preload torque values act clockwise about the given axis (that is, x, y or z) on body 1 and counterclockwise on body 2.
 Enter the Offsets Disp X, Y and Z values as a real value. Displacement offsets (Q_{k}) are subtracted from the actual displacement of body 1 with respect to body 2.
 Enter the Offsets Angle X, Y and Z values as a real value. Angle offsets are subtracted from the actual angular displacement.
 Enter the Scales Disp X, Y and Z values as a positive, real value. The displacement scale (H_{k}) scales both the input displacement and velocity, but not the displacement offset. The default value is one (1).
 Enter the Scales Angle X, Y an Z values as a positive, real value. The displacement scale (H_{k}) scales both the input displacement and velocity, but not the displacement offset. The default value is one (1).
 Enter the Scales Force X, Y and Z values and Torque X, Y Z value as positive, real values. Enter a positive, real value. The force scale (V_{k}) scales the force function, but not the preload. The default value is one (1).
The bushing force for the K^{th} direction (x, y, z, ax, ay, az) is defined by a function:
 ${F}_{k}$
 Force in the k^{th} direction
 ${G}_{k}({d}_{k},{\dot{d}}_{k},{x}_{k},t)$
 Force function in the k^{th} direction
 ${d}_{k}$
 Displacement input in the k^{th} direction
 ${\dot{d}}_{k}$
 Velocity input in the k^{th} direction
 ${x}_{k}$
 Array of internal state (that is, hysteresis) in the k^{th} direction
 $t$
 Time
The displacement offset Q_{k} and the displacement scale H_{k} modify the displacement and velocity to compute new inputs to function G as follows:
${q}_{k}={H}_{k}\cdot {d}_{k}{Q}_{k}$ is the scaled, offset displacement.
${\dot{q}}_{k}={H}_{k}\cdot {d}_{k}$ is the scaled velocity.
So force is then computed using the modified inputs ${q}_{k}$ and ${\dot{q}}_{k}$ :
Finally, the force/torque preload P_{k} and force/torque scale V_{k} modify the output so the force computation is: