/MAT/LAW72 (HILL_MMC)

Block Format Keyword Describes the anisotropic Hill material with a modified Mohr fracture criteria. This law is available for shell and solid.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW72/mat_ID/unit_ID or /MAT/HILL_MMC/mat_ID/unit_ID
mat_title
ρiρi
E v
σ0yσ0y ε0pε0p n F G
H N L M
C1 C2 C3 m Dc

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρiρi Initial density.

(Real)

[kgm3][kgm3]
E Initial Young's modulus.

(Real)

[Pa][Pa]
v Poisson's ratio.

(Real)

σ0yσ0y Initial yield stress.

Default = 1020 (Real)

[Pa][Pa]
ε0pε0p Initial plastic strain.

Default = 10-20 (Real)

n Exponent for the isotropic function for the swift hardening:

σy=σ0y(εp+ε0p)nσy=σ0y(εp+ε0p)n

It is also used as an exponent in the MMC failure equations. 2

Default = 1.0 (Real)

F, G, H, L, M, N Six HILL Materials anisotropic parameters (> 0).

(float)

C1 First parameter for MMC fracture model.

(Real)

C2 Second parameter for MMC fracture model.

Default = σ0yσ0y (Real)

[Pa][Pa]
C3 Third parameter for MMC fracture model.

(Real)

m Exponent for the softening function. 3

Default = 1.0 (Real)

Dc Critical damage.
= 1 (Default)
The element is deleted when damage reaches one.
> 1
The yield stress is modified by using a softening function. 3
If damage reaches the critical damage value, the element is deleted.

(Real)

Example (Metal)

Comments

  1. 3D equivalent Hill stress:
    f=F(σyyσzz)2+G(σzzσxx)2+H(σxxσyy)2+2Lσ2yz+2Mσ2zx+2Nσ2xyf=F(σyyσzz)2+G(σzzσxx)2+H(σxxσyy)2+2Lσ2yz+2Mσ2zx+2Nσ2xy

    For shell element, take:

    f=Fσ2yy+Gσ2xx+H(σxxσyy)2+2Nσ2xyf=Fσ2yy+Gσ2xx+H(σxxσyy)2+2Nσ2xy

  2. MMC fracture criteria:
    D=εp0dεpεf(θ,η)D=εp0dεpεf(θ,η)
    With
    εf(ˉθ,η)={σ0yC2[C3+323(1C3)(sec(ˉθπ6)1)][1+C213cos(ˉθπ6)+C1(η+13sin(ˉθπ6))]}1nεf(¯θ,η)=σ0yC2[C3+323(1C3)(sec(¯θπ6)1)]1+C213cos(¯θπ6)+C1(η+13sin(¯θπ6))1n
    • For 3D solid elements

      ηη is stress triaxiality with η=13(σxx+σyy+σzz)σVMη=13(σxx+σyy+σzz)σVM

      ˉθ¯θ is shift Lode angle ˉθ=12πarcosζ¯θ=12πarcosζ

      with Lode angle ( θθ ) parameter ζ=cos(3θ)=272J3σ3VMζ=cos(3θ)=272J3σ3VM

      J3J3 is the third invariant of the deviatoric stress.

    • For shell elements

      ηη is stress triaxiality with η=13(σxx+σyy+σzz)σVMη=13(σxx+σyy+σzz)σVM

      ˉθ¯θ is shift Lode angle ˉθ=12πarcosζ¯θ=12πarcosζ

      with Lode angle ( θθ ) parameter ζ=cos(3θ)=272η(η213)ζ=cos(3θ)=272η(η213)

  3. Fracture and damage with MMC fracture criteria:
    • When D = 1: fracture initiate
    • By 1 < D < Dc: the yield stress is multiplied by softening function ββ to reduce the deformation resistance.

      σy=βσ0y(εp+ε0p)nσy=βσ0y(εp+ε0p)n with β=(DcDDc1)m0<β<1β=(DcDDc1)m0<β<1

    • If DDc, the element is deleted.
    • The exponent m is used to describe the softening behavior. It is recommended to use m > 0.

      If 0 < m < 1, then the softening curve is convex.

      If m > 1, then the softening curve is concave. The softening is between εfεf and DcεfDcεf . Once the plastic strain is reached DcεfDcεf (in this case D>DcD>Dc ), then the element is deleted.


      Figure 2.


      Figure 3.
  4. It is possible to display user variables in animation files (with Engine /ANIM/Eltyp/Restype) and in Time history file (with Starter /TH/SHEL and /TH/BRIC):
    • USER1: Damage value
  5. It is also possible to display a normalized damage variable Dn=DDcDn=DDc in animation files with /ANIM/BRICK/DAMG, /ANIM/SHELL/DAMG, /H3D/SHELL/DAMG and /H3D/SOLID/DAMG.