/MAT/LAW112 (PAPER or XIA)
Block Format Keyword The Paperboard law models an orthotropic and dissymmetric elasto-plastic material from proposed by Xia, 2002.
The basic principle is to fully uncouple the behavior in the plane of the paper sheet and the behavior out of the plane. A yield stress is defined for each directions of loading, in tension and compression.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW112/mat_ID/unit_ID or /MAT/PAPER/mat_ID/unit_ID or /MAT/XIA/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρi | |||||||||
E1 | E2 | E3 | Ires | Itab | Ismooth | ||||
ν21 | G12 | G23 | G13 | ||||||
K | E3C | CC | |||||||
ν1p | ν2p | ν4p | ν5p |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
S01 | A01 | B01 | C01 | ||||||
S02 | A02 | B02 | C02 | ||||||
S03 | A03 | B03 | C03 | ||||||
S04 | A04 | B04 | C04 | ||||||
S05 | A05 | B05 | C05 | ||||||
ASIG | BSIG | CSIG | |||||||
TAU0 | ATAU | BTAU |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
TAB_YLD1 | MAT_Xscale1 | MAT_Yscale1 | |||||||
TAB_YLD2 | MAT_Xscale2 | MAT_Yscale2 | |||||||
TAB_YLD3 | MAT_Xscale3 | MAT_Yscale3 | |||||||
TAB_YLD4 | MAT_Xscale4 | MAT_Yscale4 | |||||||
TAB_YLD5 | MAT_Xscale5 | MAT_Yscale5 | |||||||
TAB_YLDC | MAT_XscaleC | MAT_YscaleC | |||||||
TAB_YLDS | MAT_XscaleS | MAT_YscaleS |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | (Optional) Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
ρi | Initial
density. (Real) |
[kgm3] |
Ei | Young’s modulus in the
ith orthotropic direction. (Real) |
[Pa] |
νij | Poisson's ratio related to the
ith and jth orthotropic
direction. (Real) |
|
Gij | Shear modulus related to the
ith and jth orthotropic
direction. (Real) |
[Pa] |
Ires | Resolution method for plasticity.
(Integer) |
|
Itab | Yield stresses computation.
(Integer) |
|
Ismooth | Interpolation type (in case of
tabulated yield function).
(Integer) |
|
K | In-plane yield surface
exponent. Default = 1.0 (Real) |
|
E3C | First elastic compression
parameter. Default = E3 (Real) |
[Pa] |
CC | Second elastic compression
parameter. Default = 1.0 (Real) |
|
ν1p | Tensile plastic Poisson’s ratio in
direction 1. (Real) |
|
ν2p | Tensile plastic Poisson’s ratio in
direction 2. (Real) |
|
ν4p | Compressive plastic Poisson’s ratio
in direction 1. (Real) |
|
ν5p | Compressive plastic Poisson’s ratio
in direction 2. (Real) |
|
S0i | Initial yield stress in the
ith direction of loading. Each direction is
associated to a given loading direction following the order:
Default = 1.0e20 (Real) |
[Pa] |
A0i | First hardening parameter in the
ith direction of loading. (Real) |
[Pa] |
B0i | Second hardening parameter in the
ith direction of loading. (Real) |
|
C0i | Third hardening parameter in the
ith direction of loading. (Real) |
[Pa] |
ASIG | Initial out-of-plane yield stress
in compression. Default = 1.0e20 (Real) |
[Pa] |
BSIG | First out-of-plane hardening
parameter in compression. (Real) |
[Pa] |
CSIG | Second out-of-plane hardening
parameter in compression. (Real) |
|
TAU0 | Initial transverse shear yield
stress. Default = 1.0e20 (Real) |
[Pa] |
ATAU | First transverse shear hardening
parameter. (Real) |
[Pa] |
BTAU | Second transverse shear hardening
parameter. (Real) |
|
TAB_YLDi | Tabulated yield stress – plastic
strain - strain rate function identifier in the ith
direction of loading. (Integer) |
|
MAT_Xscalei | X scale factor of the tabulated
yield – plastic strain - strain rate function in the
ith direction of loading. Default = 1.0 (Real) |
[Hz] |
MAT_Yscalei | Y scale factor of the tabulated
yield – plastic strain - strain rate function in the
ith direction of loading. Default = 1.0 (Real) |
[Pa] |
▸Example (Paper)
▸Example (Tabulated)
Comments
- To describe the
behavior of the paperboard material law, the following orthotropic direction
is considered.
Figure 1. - The elastic behavior
of this material law is orthotropic.
The in-plane behavior should be fully uncoupled with the out-of-plane behavior, computed as:
{σxx=C11εxx+C12εyyσyy=C21εxx+C22εyyσxy=G12γxyWith C=11−ν12ν21[E1ν12E2ν21E1E2]
The transverse shear components are computed as:
{σyz=G23εyzσzx=G21εzxThe out-of-plane elastic behavior (for solids only) is treated as a uniaxial equivalent problem. However, the computation of the stress may differ between tension and compression. The elasticity becomes nonlinear for compressive loadings.
σzz=E3εezzifεezz≥0σzz=E3C(1−e−Ccεezz)ifεezz<0 - In the Xia 2002
formulation, the in-plane yield criterion, denoted as
f
, is defined as:f=6∑I=1χI(σ:NIσIY)2k−1
Where,
χI={1ifσ:NI>00otherwise- χI
- Switching parameters.
- σ
- Cauchy stress tensor.
- NI
- Normal direction of the yield planes.
- σIY
- Yield stresses.
- k
- Positive integer.
Each direction is associated to a given loading direction following the order defined below:- 1
- Tension in orthotropic direction 1.
- 2
- Tension in orthotropic direction 2.
- 3
- Positive in-plane shear.
- 4
- Compression in orthotropic direction 1.
- 5
- Compression in orthotropic direction 2.
- 6
- Negative in-plane shear (same input as positive in-plane shear σ6Y=σ3Y ).
The normal direction vector to the yield planes are:
N1=[1√1+ν21p−ν1p√1+ν21p0000]N2=[−ν2p√1+ν22p1√1+ν22p0000]N3=[000100]N4=[−1√1+ν24pν4p√1+ν24p0000]N5=[ν5p√1+ν25p−1√1+ν25p0000]N6=[000−100]
Each direction I is then associated to a specific yield stress whose expression is:
σIY=S0I+A0Itanh(B0Iεfp)+C0IεfpwithI∈[1,6]
Where, εfp is the in-plane equivalent plastic strain (associated to the yield function f ).
The out-of-plane yield function is denoted as g is defined as:
g=−σzz−σCY with σCY=Aσ+Bσexp(Cσεgp)
Where, εgp is the out-of-plane equivalent plastic strain (associated to the yield function g ).
The transverse shear yield function is:
h=√σ2yz+σ2zxσSY−1Where,- σSY=τ0+[Aτ−min(0,σzz)Bτ]εhp
- εhp
- Out-of-plane equivalent plastic strain (associated to the yield function h ).
If the tabulated yield stress option is selected (Itab = 1), each yield stress is associated to a table (TAB_YLDi) to define the stress evolution with the plastic strain, at several plastic strain-rate. Two scale factors can be also defined in the X and Y direction for each table. In this case, the hardening parameters S0i , A0i , B0i , C0i , Aσ , Bσ , Cσ , τ0 , Aτ , and Bτ are ignored, and the yield stress becomes:
σIY=ftab_YLDIY(εfp,˙εfp)I∈[1,6]σCY=ftab_YLDCY(εgp,˙εgp)σSY=ftab_YLDSY(εhp,˙εhp)
For output field, an equivalent “global” plastic strain is computed as:
εp=√(εfp)2+(εgp)2+(εhp)2