Package Modelica.​Magnetic.​FluxTubes.​Examples
Illustration of component usage with simple models of various devices

Information

This package contains examples to demonstrate the usage of the flux tubes components.

Extends from Modelica.​Icons.​ExamplesPackage (Icon for packages containing runnable examples).

Package Contents

NameDescription
Hysteresis 
MovingCoilActuatorTwo translatory electrodynamic actuator models of different modelling depth and their comparison
SaturatedInductorInductor with saturation in the ferromagnetic core
SolenoidActuatorTwo models of a reluctance actuator of different modelling depth and their comparison and usage
UtilitiesUtilities to be used in examples

Model Modelica.​Magnetic.​FluxTubes.​Examples.​SaturatedInductor
Inductor with saturation in the ferromagnetic core

Information

This model demonstrates the effects of non-linear magnetisation characteristics of soft magnetic materials (hysteresis neglected). A sinusoidal voltage is applied to an inductor with a closed ferromagnetic core of rectangular shape. Set the tolerance to 1e-7, simulate for 0.1 s and plot for example:

    coil.i vs. time           // non-harmonic current due to saturation of the core material
    r_mFe.mu_r vs. r_mFe.B    // relative permeability vs. flux density inside core
    r_mFe.B vs. r_mFe.H       // magnetisation curve B(H); hysteresis neglected

The magnetisation characteristics of the flux tube element representing the ferromagnetic core can easily be changed from simplified linear behaviour (nonLinearPermeability set to false and R_mFe.mu_rConst set to a positive value, preferably mu_rConst >> 1) to non-linear behaviour (e.g., selection of one of the electric sheets in Material.SoftMagnetic with nonLinearPermeability set to true). This enables for convenient initial design of magnetic circuits with linear material characteristics prior to simulation with non-linear behaviour.

Note

If the supply voltage has a zero-crossing when applied to the inductor at time t=0 (i.e., source.phase set to zero instead of π/2), then the inrush current that is typical for switching of inductive loads can be observed.

Extends from Modelica.​Icons.​Example (Icon for runnable examples).