/MAT/LAW14 (COMPSO)

Block Format Keyword This law describes an orthotropic solid material using the Tsai-Wu formulation that is mainly designed to model uni-directional composites. This material is assumed to be 3D orthotropic-elastic before the Tsai-Wu criterion is reached. The material becomes nonlinear afterwards.

The nonlinearity in direction 3 is the same as that in direction 2 to represent the behavior of a composite matrix material. The Tsai-Wu criterion can be set dependent on the plastic work and strain rate in each of the orthotropic directions and in shear to model material hardening. Stress based orthotropic criterion for brittle damage and failure is available. /MAT/LAW12 (3D_COMP) is an improved version of this material and should be used instead of LAW14.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW14/mat_ID/unit_ID or /MAT/COMPSO/mat_ID/unit_ID
mat_title
ρiρi
E11 E22 E33
ν12ν12 ν23ν23 ν31ν31
G12 G23 G31
σt1σt1 σt2σt2 σt3σt3 δδ
B n fmax WrefpWrefp
σt1yσt1y σt2yσt2y σc1yσc1y σc2yσc2y
σt12yσt12y σc12yσc12y σt23yσt23y σc23yσc23y
αα Ef c ˙ε0˙ε0 ICC

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρiρi Initial density.

(Real)

[kgm3][kgm3]
E11 Young's modulus in direction 1.

(Real)

[Pa][Pa]
E22 Young's modulus in direction 2.

(Real)

[Pa][Pa]
E33 Young's modulus in direction 3.

(Real)

[Pa][Pa]
ν12ν12 Poisson's ratio between directions 1 and 2.

(Real)

ν23ν23 Poisson's ratio between directions 2 and 3.

(Real)

ν31ν31 Poisson's ratio between directions 3 and 1.

(Real)

G12 Shear modulus in direction 12.

(Real)

[Pa][Pa]
G23 Shear modulus in direction 23.

(Real)

[Pa][Pa]
G31 Shear modulus in direction 31.

(Real)

[Pa][Pa]
σt1σt1 Stress at the beginning of composite tensile/compressive failure in direction 1. 4

Default = 1030 (Real)

[Pa][Pa]
σt2σt2 Stress at the beginning of composite tensile/compressive failure in direction 2. 4

Default = σt1σt1 (Real)

[Pa][Pa]
σt3σt3 Stress at the beginning of composite tensile/compressive failure in direction 3. 4

Default = σt2σt2 (Real)

[Pa][Pa]
δδ Maximum damage factor. 4

Default = 0.05 (Real)

B Global plastic hardening parameter.

(Real)

n Global plastic hardening exponent.

Default = 1.0 (Real)

fmax Maximum value of the Tsai-Wu criterion limit. 3

Default = 1010 (Real)

WrefpWrefp Reference plastic work per unit solid volume.

Default = 1.0 (in local unit system) (Real)

[Jm3][Jm3]
σt1yσt1y Yield stress in tension in direction 1.

Default = 0.0 (Real)

[Pa][Pa]
σt2yσt2y Yield stress in tension in direction 2.

Default = 0.0 (Real)

[Pa][Pa]
σc1yσc1y Yield stress in compression in direction 1.

Default = 0.0 (Real)

[Pa][Pa]
σc2yσc2y Yield stress in compression in direction 2.

Default = 0.0 (Real)

[Pa][Pa]
σt12yσt12y Yield stress in tensile shear in direction 12.

Default = 0.0 (Real)

[Pa][Pa]
σc12yσc12y Yield stress in compressive shear in direction 12.

Default = 0.0 (Real)

[Pa][Pa]
σt23yσt23y Yield stress in tensile shear in direction 23.

Default = 0.0 (Real)

[Pa][Pa]
σc23yσc23y Yield stress in compressive shear in direction 23.

Default = 0.0 (Real)

[Pa][Pa]
αα Fiber volume fraction. 5

Default = 0.0 (Real)

Ef Fiber Young's modulus.

Default = 0.0 (Real)

[Pa][Pa]
c Global strain rate coefficient.
= 0
No strain rate effect

(Real)

˙ε0˙ε0 Reference strain rate.

(Real)

[1s][1s]
ICC Strain rate effect flag. 3
= 1 (Default)
Strain rate effect on fmax
= 2
No strain rate effect on fmax

(Integer)

Example (Metal)

Comments

  1. This material requires an orthotropic solid property (/PROP/TYPE6 (SOL_ORTH), /PROP/TYPE21 (TSH_ORTH) or /PROP/TYPE22 (TSH_COMP)). It can only be used with solid elements for a 3-dimensional analysis. This law is compatible with 10-node tetrahedron and 4-node tetrahedron elements. The orthotropic material directions are specified in the property entries.
  2. Stress-strain relation in elastic phase.

    The stresses and strains are connected as:

    ε11=1E11σ11ν21E22σ22ν31E33σ33ε11=1E11σ11ν21E22σ22ν31E33σ33
    ε22=1E22σ22ν21E11σ11ν32E33σ33ε22=1E22σ22ν21E11σ11ν32E33σ33
    ε33=1E33σ33ν13E11σ11ν23E22σ22ε33=1E33σ33ν13E11σ11ν23E22σ22

    γ12=12G12σ12γ12=12G12σ12 ν21E22=ν12E11ν21E22=ν12E11

    γ23=12G23σ23γ23=12G23σ23 ν32E33=ν23E22ν32E33=ν23E22

    γ31=12G31σ31γ31=12G31σ31 ν13E11=ν31E33ν13E11=ν31E33

    Where,
    εijεij
    Strains
    σijσij
    Stresses
    γ12γ12 , γ23γ23 and γ31γ31
    Distortions in the corresponding material directions
    For example, for γ12γ12 :

    mat_law12_distortion
    Figure 1.
  3. Tsai-Wu criterion
    The material is assumed to be elastic until the Tsai-Wu criterion is fulfilled. After exceed the Tsai-Wu criterion limit F(W*p,˙ε)F(Wp,˙ε) , the material becomes nonlinear.
    • If F(σ)<F(W*p,˙ε)F(σ)<F(Wp,˙ε) : elastic
    • If F(σ)>F(W*p,˙ε)F(σ)>F(Wp,˙ε) : nonlinear
    Where,
    • Stress F(σ)F(σ) in element for Tsai-Wu criterion computed as:
      F(σ)=F1σ1+F2σ2+F3σ3+F11σ21+F22σ22+F33σ23+F44σ212+F55σ223+F66σ231+2F12σ1σ2+2F23σ2σ3+2F13σ1σ3
    The coefficients of the Tsai-Wu criterion are determined from the limiting stresses when the material becomes nonlinear in directions 1, 2, 3 or 12, 23, 31 (shear) in compression or tension as:
    F1=1σc1y+1σt1y F2=1σc2y+1σt2y F3=1σc3y+1σt3y
    F11=1σc1yσt1y F22=1σc2yσt2y F33=1σc3yσt3y
    F44=1σc12yσt12y F55=1σc23yσt23y F66=1σc31yσt31y
    F12=12(F11F22) F23=12(F22F33) F13=12(F11F33)
    The nonlinear behavior in directions 2 and 3 is assumed to be the same to represent the composite matrix material. It is assumed that yield stresses of the composite matrix material (in directions 2 and 3) are related as:
    σc3y=σc2y σt3y=σt2y
    σc31y=σc12y σt31y=σt12y
    • F(W*p,˙ε) is the variable Tsai-Wu criterion limit defined:
      F(W*p,˙ε)=[1+B(W*p)n][1+cln(˙ε˙ε0)]
      Where,
      Wpref
      Reference plastic work
      W*p=WpWrefp
      Relative plastic work
      B
      Plastic hardening parameter
      n
      Plastic hardening exponent
      ˙ε0
      Reference true strain rate
      c
      Strain rate coefficient
      F(W*p,˙ε) the maximum value of the Tsai-Wu criterion limit depends on ICC:
      If ICC=1
      fmax(1+cln(˙ε˙εo))
      If ICC=2
      fmax

      Where, fmax=(σmaxσy)2

  4. Stress damage

    When the limiting stress value of σti is reached in tension, then the corresponding stress value is scaled as σreducedi=(1Di)σti . The value of Di is updated on each time step Di=iδi . After Di reaches the value of 1 the stress in corresponding direction is set to 0. The damage is irreversible, if a value of Di is attained the material will not reach any lower damage value.

  5. Fiber reinforcement

    These parameters allow the user to define additional fiber reinforcement in the 11 direction. Additional stress in direction 11 will be added equal to αEfε11 .