/MAT/LAW14 (COMPSO)
Block Format Keyword This law describes an orthotropic solid material using the Tsai-Wu formulation that is mainly designed to model uni-directional composites. This material is assumed to be 3D orthotropic-elastic before the Tsai-Wu criterion is reached. The material becomes nonlinear afterwards.
The nonlinearity in direction 3 is the same as that in direction 2 to represent the behavior of a composite matrix material. The Tsai-Wu criterion can be set dependent on the plastic work and strain rate in each of the orthotropic directions and in shear to model material hardening. Stress based orthotropic criterion for brittle damage and failure is available. /MAT/LAW12 (3D_COMP) is an improved version of this material and should be used instead of LAW14.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW14/mat_ID/unit_ID or /MAT/COMPSO/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρiρi | |||||||||
E11 | E22 | E33 | |||||||
ν12ν12 | ν23ν23 | ν31ν31 | |||||||
G12 | G23 | G31 | |||||||
σt1σt1 | σt2σt2 | σt3σt3 | δδ | ||||||
B | n | fmax | WrefpWrefp | ||||||
σt1yσt1y | σt2yσt2y | σc1yσc1y | σc2yσc2y | ||||||
σt12yσt12y | σc12yσc12y | σt23yσt23y | σc23yσc23y | ||||||
αα | Ef | c | ˙ε0˙ε0 | ICC |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
ρiρi | Initial density. (Real) |
[kgm3][kgm3] |
E11 | Young's modulus in direction
1. (Real) |
[Pa][Pa] |
E22 | Young's modulus in direction
2. (Real) |
[Pa][Pa] |
E33 | Young's modulus in direction
3. (Real) |
[Pa][Pa] |
ν12ν12 | Poisson's ratio between directions 1 and
2. (Real) |
|
ν23ν23 | Poisson's ratio between directions 2 and
3. (Real) |
|
ν31ν31 | Poisson's ratio between directions 3 and
1. (Real) |
|
G12 | Shear modulus in direction
12. (Real) |
[Pa][Pa] |
G23 | Shear modulus in direction
23. (Real) |
[Pa][Pa] |
G31 | Shear modulus in direction
31. (Real) |
[Pa][Pa] |
σt1σt1 | Stress at the beginning of composite
tensile/compressive failure in direction 1. 4 Default = 1030 (Real) |
[Pa][Pa] |
σt2σt2 | Stress at the beginning of composite
tensile/compressive failure in direction 2. 4 Default = σt1σt1 (Real) |
[Pa][Pa] |
σt3σt3 | Stress at the beginning of composite
tensile/compressive failure in direction 3. 4 Default = σt2σt2 (Real) |
[Pa][Pa] |
δδ | Maximum damage factor. 4 Default = 0.05 (Real) |
|
B | Global plastic hardening
parameter. (Real) |
|
n | Global plastic hardening
exponent. Default = 1.0 (Real) |
|
fmax | Maximum value of the Tsai-Wu criterion
limit. 3 Default = 1010 (Real) |
|
WrefpWrefp | Reference plastic work per unit solid
volume. Default = 1.0 (in local unit system) (Real) |
[Jm3][Jm3] |
σt1yσt1y | Yield stress in tension in direction
1. Default = 0.0 (Real) |
[Pa][Pa] |
σt2yσt2y | Yield stress in tension in direction
2. Default = 0.0 (Real) |
[Pa][Pa] |
σc1yσc1y | Yield stress in compression in direction
1. Default = 0.0 (Real) |
[Pa][Pa] |
σc2yσc2y | Yield stress in compression in direction
2. Default = 0.0 (Real) |
[Pa][Pa] |
σt12yσt12y | Yield stress in tensile shear in
direction 12. Default = 0.0 (Real) |
[Pa][Pa] |
σc12yσc12y | Yield stress in compressive shear in
direction 12. Default = 0.0 (Real) |
[Pa][Pa] |
σt23yσt23y | Yield stress in tensile shear in
direction 23. Default = 0.0 (Real) |
[Pa][Pa] |
σc23yσc23y | Yield stress in compressive shear in
direction 23. Default = 0.0 (Real) |
[Pa][Pa] |
αα | Fiber volume fraction. 5 Default = 0.0 (Real) |
|
Ef | Fiber Young's modulus. Default = 0.0 (Real) |
[Pa][Pa] |
c | Global strain rate coefficient.
(Real) |
|
˙ε0˙ε0 | Reference strain
rate. (Real) |
[1s][1s] |
ICC | Strain rate effect flag. 3
(Integer) |
▸Example (Metal)
Comments
- This material requires an orthotropic solid property (/PROP/TYPE6 (SOL_ORTH), /PROP/TYPE21 (TSH_ORTH) or /PROP/TYPE22 (TSH_COMP)). It can only be used with solid elements for a 3-dimensional analysis. This law is compatible with 10-node tetrahedron and 4-node tetrahedron elements. The orthotropic material directions are specified in the property entries.
- Stress-strain relation in elastic
phase.
The stresses and strains are connected as:
ε11=1E11σ11−ν21E22σ22−ν31E33σ33ε11=1E11σ11−ν21E22σ22−ν31E33σ33ε22=1E22σ22−ν21E11σ11−ν32E33σ33ε22=1E22σ22−ν21E11σ11−ν32E33σ33ε33=1E33σ33−ν13E11σ11−ν23E22σ22ε33=1E33σ33−ν13E11σ11−ν23E22σ22γ12=12G12σ12γ12=12G12σ12 ν21E22=ν12E11ν21E22=ν12E11
γ23=12G23σ23γ23=12G23σ23 ν32E33=ν23E22ν32E33=ν23E22
γ31=12G31σ31γ31=12G31σ31 ν13E11=ν31E33ν13E11=ν31E33
Where,- εijεij
- Strains
- σijσij
- Stresses
- γ12γ12 , γ23γ23 and γ31γ31
- Distortions in the corresponding material directions
Figure 1. - Tsai-Wu criterionThe material is assumed to be elastic until the Tsai-Wu criterion is fulfilled. After exceed the Tsai-Wu criterion limit F(W*p,˙ε)F(W∗p,˙ε) , the material becomes nonlinear.
- If F(σ)<F(W*p,˙ε)F(σ)<F(W∗p,˙ε) : elastic
- If F(σ)>F(W*p,˙ε)F(σ)>F(W∗p,˙ε) : nonlinear
Where,- Stress
F(σ)F(σ)
in element for Tsai-Wu criterion computed as:
F(σ)=F1σ1+F2σ2+F3σ3+F11σ21+F22σ22+F33σ23+F44σ212+F55σ223+F66σ231+2F12σ1σ2+2F23σ2σ3+2F13σ1σ3
The coefficients of the Tsai-Wu criterion are determined from the limiting stresses when the material becomes nonlinear in directions 1, 2, 3 or 12, 23, 31 (shear) in compression or tension as:F1=−1σc1y+1σt1y F2=−1σc2y+1σt2y F3=−1σc3y+1σt3y F11=1σc1yσt1y F22=1σc2yσt2y F33=1σc3yσt3y F44=1σc12yσt12y F55=1σc23yσt23y F66=1σc31yσt31y F12=−12√(F11F22) F23=−12√(F22F33) F13=−12√(F11F33) The nonlinear behavior in directions 2 and 3 is assumed to be the same to represent the composite matrix material. It is assumed that yield stresses of the composite matrix material (in directions 2 and 3) are related as:σc3y=σc2y σt3y=σt2y σc31y=σc12y σt31y=σt12y -
F(W*p,˙ε)
is the variable Tsai-Wu criterion limit
defined:F(W*p,˙ε)=[1+B(W*p)n]⋅[1+c⋅ln(˙ε˙ε0)]Where,
- Wpref
- Reference plastic work
- W*p=WpWrefp
- Relative plastic work
- B
- Plastic hardening parameter
- n
- Plastic hardening exponent
- ˙ε0
- Reference true strain rate
- c
- Strain rate coefficient
F(W*p,˙ε) the maximum value of the Tsai-Wu criterion limit depends on ICC:- If ICC=1
- fmax⋅(1+c⋅ln(˙ε˙εo))
- If ICC=2
- fmax
Where, fmax=(σmaxσy)2
- Stress damage
When the limiting stress value of σti is reached in tension, then the corresponding stress value is scaled as σreducedi=(1−Di)σti . The value of Di is updated on each time step Di=∑iδi . After Di reaches the value of 1 the stress in corresponding direction is set to 0. The damage is irreversible, if a value of Di is attained the material will not reach any lower damage value.
- Fiber reinforcement
These parameters allow the user to define additional fiber reinforcement in the 11 direction. Additional stress in direction 11 will be added equal to α⋅Ef⋅ε11 .