Composite Properties

Composites may be modeled with solid or shell element. Depending on the element type, the following properties can be used in Radioss to model a composite.

Shell Elements

Modeling composites in Radioss may be defined as Layer-based or Ply-based with different properties.
  • Layer-based modeling with /PROP/TYPE10 (SH_COMP), /PROP/TYPE11 (SH_SANDW)
  • Ply-based modeling with /PROP/TYPE17 (STACK), /PROP/TYPE51, /PROP/PCOMPP+/STACK, /PROP/TYPE19 (PLY) and /PLY
    Figure 1.


For ply-based modeling, info (like material, thickness, anisotropic angle, anisotropic axis angle and number of integration points) for each ply defined in /PROP/TYPE19 (or /PLY) and assembled in /PROP/TYPE17 or /PROP/TYPE51 (or /STACK) with option Pply_IDi.
Figure 2.


For ply-based modeling, plies may be assembled "by ply” or “by substack”. “By ply” is simply the order of the plies one by one from bottom to top. “By substack” uses a series of ordered plies one by one to create each substack, and then each substack may be combined with substack connection “INT”.
Figure 3.


Figure 4. Stack in /PROP/TYPE51


For composite properties, the following topics are of interest:
  • Layer (ply) number and integration points each layer (ply)
  • Anisotropy in layer (ply)
  • Layer (ply) thickness and position
  • Composite material used for Layer (ply)
    Table 1. Layer-based Properties
    /PROP/TYPE10 (SH_COMP) /PROP/TYPE11 (SH_SANDW)
    N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C9@

    Layer Numbers

    Or Pply_IDi

    Ply Numbers

    N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C9@ =0~100 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C9@ =1~100
    Integration points of each layer/ply 1 per Layer 1 per Layer
    Iint

    Integration formulation

    ϕ i + V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaOGaey4kaSIaaCOvaaaa@3AA4@

    Anisotropic direction

    ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaaaa@38D9@ + skew

    Anisotropic direction

    θ d r a p e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadsgacaWGYbGaamyyaiaadchacaWGLbaabeaaaaa@3C7E@

    Ply orientation change

    α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaaaa@38B0@

    Angle between anisotropic axis

    t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaaaaa@380A@

    Layer/Ply thickness

    Ipos + Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbaabeaaaaa@37F0@

    Layer/Ply position

    Ipos=2,3,4

    Layer/Ply offset

    mat_IDi

    Material for each layer/ply

    Use material defined in /PART

    Must use same material type for all layers.

    Commonly used Composite Material Law 15, 25 and user material 15, 25 and user material
    XFEM compatibility (crack propagation)

    With /FAIL/JOHNSON, /FAIL/TAB1 and /FAIL/TBUTCHER

    Plyxfem

    Delamination between layer/ply

    Minterply

    Material between layer/ply

    Table 2. Ply-based Properties
    /PROP/TYPE17 + /PROP/TYPE19 /PROP/TYPE51 + /PROP/TYPE19 /PROP/PCOMPP+/STACK+/PLY
    N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C9@

    Layer Numbers

    Or Pply_IDi

    Ply Numbers

    Pply_IDi=1~200 Pply_IDi=1~200 Pply_IDii1~n
    Integration points of each layer/ply 1 per Ply

    Npt_ply=1 in /PROP/TYPE19

    1~9 per Ply

    Npt_ply=1~9 in /PROP/TYPE19

    1~9 per Ply

    Npt_ply=1~9 in /PLY

    Iint

    Integration formulation

    Uniformed or Gauss

    Uniformed or Gauss

    ϕ i + V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaOGaey4kaSIaaCOvaaaa@3AA4@

    Anisotropic direction

    ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaaaa@38D9@ + skew

    Anisotropic direction

    θ d r a p e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadsgacaWGYbGaamyyaiaadchacaWGLbaabeaaaaa@3C7E@

    Ply orientation change

    Defined in /PROP/TYPE19

    Defined in /PROP/TYPE19

    Defined in /PLY

    α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaaaa@38B0@

    Angle between anisotropic axies

    in /PROP/TYPE19

    in /PROP/TYPE19

    in /PLY

    t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaaaaa@380A@

    Layer/Ply thickness

    Different in /PROP/TYPE19

    Different in /PROP/TYPE19

    Different in /PLY

    Ipos + Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbaabeaaaaa@37F0@

    Layer/Ply position

    Ipos=2,3,4

    Layer/Ply offset

    mat_IDi

    Material for each layer/ply

    Must use same material type for all plies.

    Different material type allows for each ply.

    Different material type allows for each ply.

    Commonly used Composite Material Law 25, 27, 36, 60, 72, 93 and user material 25, ≥28 and user material 25 and user material
    XFEM compatibility (crack propagation)

    With /FAIL/JOHNSON and /FAIL/TBUTCHER

    Plyxfem

    Delamination between layer/ply

    Minterply

    Material between layer/ply

    Only with LAW1+/FAIL/LAD_DAM

Layer (Ply) Number N (Nply_IDi) and Integration Points each Layer (Ply)

For layer-based modeling which use /PROP/TYPE10, /TYPE11. N is the number of layers through the shell thickness. For these properties, there is one integration point (IP) each layer.

For ply-based modeling, which use /PROP/TYPE17, /TYPE51 or /STACK/PCOMPP. Pply_IDi is the number of plies through the shell thickness. Plies could be combined until n plies for these properties.

For TYPE17 only one integration point is allowed while for TYPE51 and /STACKF up to 9 integration points are allowed. The number of integration points are defined with option “Npt_ply” in property TYPE19 or /PLY.

Example (Ply) (/PROP/TYPE51)
In this example, Npt_ply=3 defined in /PROP/TYPE19, means 3 integration points are defined per ply and with option Iint=0 is defined in /PROP/TYPE51, then these 3 integration points are uniformly distributed through each ply thickness.
Figure 5.


If Iint=1 in /PROP/TYPE51, the integration points are distributed following Forces and Moments Calculation Gauss Integration Scheme through each ply thickness.
Figure 6.


It is possible to print animation results (plastic strain, damage, stress and strain tensor) in each specific integration point with /ANIM/SHELL/IDPLY/Keyword4/I/J (or /ANIM/SHELL/Keyword3/N/NIP).

For instance, use /ANIM/SHELL/IDPLY/EPSP/2/3 (or /ANIM/SHELL/EPSP/2/3) to print plastic strain in third integration point (red highlighted integration point in Figure 6) of second ply (ply name Ply12). For additional print info about Integration points through shell thickness for composite properties, refer to Shell stress tensor output in animation. in the FAQs.

Anisotrophy in Layer (Ply)

Figure 7.


  • The reference vector for the first anisotropic direction of the material may be defined with the flag IP, local coordinate system skew_ID or vector (Vx, Vy, Vz)
    IP=0, skew_ID=0 Vector (Vx, Vy, Vz)
    IP=0, skew_ID≠0 First direction (local X) of the local coordinate system skew_ID.
    IP=20 node N1 and N2 of the shell elements


    IP=22 First direction (local X) of the local coordinate system skew_ID.


    IP=23 Product of vector (Vx, Vy, Vz) and the shell element normal direction n


    IP=24 (for seatbelt element only) Shell seatbelt (only for /MAT/LAW119) width direction from 1st direction of skew_ID or with the node N1 and N2 of the shell elements.
    skew_ID=0:


    skew_ID≠0:


    IP=25 Azimuthal direction defined with local cylindrical coordinate system skew_ID (2nd direction).


    IP=26 First axis of the element coordinate system


  • The first material direction is defined from the reference vector and the anisotropy angles defined as:
    ϕ = ϕ s + ϕ i + Δ ϕ + θ d r a p e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcq GH9aqpcqaHvpGzdaWgaaWcbaGaam4CaaqabaGccqGHRaWkcqaHvpGz daWgaaWcbaGaamyAaaqabaGccqGHRaWkcqqHuoarcqaHvpGzcqGHRa WkcqaH4oqCdaWgaaWcbaGaamizaiaadkhacaWGHbGaamiCaiaadwga aeqaaaaa@4B66@
    Where,
    ϕ i
    is defined per ply in stack
    ϕ s
    is defined on the element
    ϕ
    is defined on the ply
    ϕ d r a p e
    is defined in the drape table

    *: only for /PROP/TYPE17, /PROP/TYPE51 and /STACK

    Figure 8 shows an Example in /PROP/TYPE11 which uses skew to define global vector V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaaaa@36D5@ .
    Figure 8.


  • Drape tables (/DRAPE) can be defined for specific shell elements or shell element groups with option drape_ID in /PROP/TYPE19 and /PLY. With this feature, the angle of anisotropic (orthotropic) direction may be changed with ϕ d r a p e and the thinning factor.
    • Only 1 slice per ply is available in the stack /PROP/TYPE17
    • Several slices per ply may be defined for the stack /STACK or /PROP/TYPE51 properties using plies with multiple integration points
  • A Composite material can be orthotropic or anisotropic. In Radioss it is possible to describe this characteristic with anisotropic axis angle α i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaaaa@38AC@ in ply-based properties. In case of α i = 90 ° MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaGyoaiaaicdacqGHWcaSaaa@3D25@ , then it describes an orthotropic material. For layer-based properties (TYPE10 and TYPE11) option α i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaaaa@38AC@ is not available, only orthotropic materials can be defined.
    Figure 9.


  • The material direction will be overwritten by the direction defined in initial state file (/INISHE/ORTHO or /INISHE/ORTH_LOC).

Layer (Ply) Thickness and Position

  • For /PROP/TYPE10, layer thickness is simply averaged by layer number
    t i = T h i c k / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaakiabg2da9iaadsfacaWGObGaamyAaiaadoga caWGRbGaai4laiaad6eaaaa@3F2C@
    and layers are automatically stacked one by one from bottom to top.
    Figure 10.


  • For properties TYPE11, TYPE17, TYPE51 and /STACK, layer (ply) position and thickness depend on option Ipos
    • If Ipos=0

      User layer (ply) thickness input t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaaaaa@380A@ will be taken, and layer (ply) position will be automatically calculated one by one from bottom to top; but if,

      i t i T h i c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeaaca WG0bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgaaeqaniabggHiLdGc cqGHGjsUcaWGubGaamiAaiaadMgacaWGJbGaam4Aaaaa@416D@

      Then, layer (ply) thickness will be adjusted to t i n e w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaDa aaleaacaWGPbaabaGaamOBaiaadwgacaWG3baaaaaa@3AE4@ , so that

      i t i n e w = T h i c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeaaca WG0bWaa0baaSqaaiaadMgaaeaacaWGUbGaamyzaiaadEhaaaaabaGa amyAaaqab0GaeyyeIuoakiabg2da9iaadsfacaWGObGaamyAaiaado gacaWGRbaaaa@4386@

      Layer (ply) position will be then adjusted, as well.

    • If Ipos=1

      User layer(ply) input of thickness t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaaaaa@380A@ and position Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbaabeaaaaa@37F0@ will be taken. Sum of layer thickness will not be checked against T h i c k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadI gacaWGPbGaam4yaiaadUgaaaa@3A83@ .

      For more information, refer to Layer thickness and position calculation. in the FAQs.

  • For properties TYPE17, TYPE51 and /STACK, it is also possible to offset the plies with Ipos=2, 3, 4
    • Ipos=2: the shell element mid-surface is at Z0 from the bottom of the ply layout
      Figure 11.


    • Ipos=3: the top of the ply layout is coincident with the element mid-surface
      Figure 12.


    • Ipos=4: the bottom of the ply layout is coincident with the element mid-surface
      Figure 13.


  • For properties /PROP/TYPE17, /PROP/TYPE51 and /STACK, ply thickness may be changed by option T h i n n i n g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadI gacaWGPbGaamOBaiaad6gacaWGPbGaamOBaiaadEgaaaa@3D5E@ in /DRAPE (defined in /PROP/TYPE19 or /PLY). Then updated ply thickness is:
    t i n e w = t i T h i n n i n g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaDa aaleaacaWGPbaabaGaamOBaiaadwgacaWG3baaaOGaeyypa0JaamiD amaaBaaaleaacaWGPbaabeaakiabgwSixlaadsfacaWGObGaamyAai aad6gacaWGUbGaamyAaiaad6gacaWGNbaaaa@47C2@

Composite Material Used for Layer (Ply)

Composite material LAW15 and LAW25 may be used for shell elements. Failure models /FAIL/HASHIN, /FAIL/PUCK and /FAIL/LAD_DAMA with LAW25 and /FAIL/CHANG with LAW15 may be used to describe composite behavior for shell element. For more information, refer to Composite Material.
  • Material for layer (ply)
    • For property TYPE10, composite uses material defined in /PART
    • For properties TYPE11 and TYPE17, composite uses material defined in option mat_IDi. Different material ID may be defined for each layer (ply). But they must use same material type. If LAW25 is used, then several different LAW25 cards may be used for different layers (plies).
    • For properties TYPE51 and /STACK, composite also uses material defined in option mat_IDi and different material type or ID may be used for each ply.
  • Material between plies
    For property TYPE17, it is possible to define delamination between plies or stacks (with Plyxfem=2). This is very useful for delamination is the main driven of composite failure. The material between plies defined with Minterply. For the moment, LAW1+/FAIL/LAD_DAM could be used to describe three different type of ply delamination.
    Figure 14.


    And then in this case additional variable δ 1 , δ 2 , δ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH0oazda WgaaWcbaGaaGymaaqabaGccaGGSaGaeqiTdq2aaSbaaSqaaiaaikda aeqaaOGaaiilaiabes7aKnaaBaaaleaacaaIZaaabeaaaaa@4083@ are added on each node of ply by computation to simulate the delamination failure between plies.
    Figure 15.


Solid Element

New composite technology allows thicker part production, modeling those parts with shell elements may not be suitable. Thick shell modeling can solve this problem. Compared with shell elements, thick shells may directly connect with other solid parts

For solid elements, for the moment only layer-based modeling with property /PROP/TYPE22 (TSH_COMP) is available. This solid property is similar to shell property /PROP/TYPE11 to define composite layup.
Table 3. Layer-based Properties
/PROP/TYPE22 (TSH_COMP)
Layer Numbers Isolid=14:

Iint=9~200

Isolid=15:
IP of each layer/ply Inpts=ijk=2~9 Inpts=j=1~200
Integration formulation
ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaaaa@38D9@ + V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaaaa@36D5@ , Anisotropic direction
ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaaaa@38D9@ + skew, Anisotropic direction
θ d r a p e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadsgacaWGYbGaamyyaiaadchacaWGLbaabeaaaaa@3C7E@ , Ply orientation change
α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadMgaaeqaaaaa@38B0@ , Angle between anisotropic axis
t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaaaaa@380A@ , Layer/Ply thickness

defined with factor t i / t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbaabeaakiaac+cacaWG0baaaa@39BF@

Ipos + Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbaabeaaaaa@37F0@ , Layer/Ply position
Ipos=2,3,4, Layer/Ply offset
mat_IDi, Material for each layer/ply

Different material type allows for each layer.

Commonly used Composite Material LAW LAW12, LAW14, LAW25 and user material
Plyxfem, Delamination between layer/ply
Minterply, Material between layer/ply
  • Layer Number and Integration Points Each Layer

    The layer number is defined using the option Iint. Iint is only used for Isolid=14 when the number of layers > 9.

    In this case, the thickness direction integration point defined by Inpts should be zero.

    Example, Icstr = 010; Inpts = 202; Iint = 100 for a number of 100 layers in "s" direction

  • Anisotrophy in Layer (Ply)
    Similar to shell property /PROP/TYPE11, reference vector V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaaaa@36D5@ and angle ϕ are used to define the material direction 1. The reference vector V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaaaa@36D5@ project to the middle surface of solid element and turn ϕ degree is the material direction 1.
    Figure 16.


  • Layer Thickness and Position

    For solid element thickness and position defined by element mesh.

  • Composite Material Used for Layer
    • With option mat_IDi, it is possible to use different material type for each layer
    • Composite material LAW12, LAW14 and LAW25 could be used with this property
    • Failure model /FAIL/HASHIN, /FAIL/PUCK and /FAIL/LAD_DAMA with these composite material laws are also accounted for
    • Material referred to in the corresponding /PART card is only used for time step and interface stiffness calculation
    • For LAW25, it is assumed that (for solids and thick shells) the material is elastic in transverse direction (material direction 2 and 3) and the E33 value must be specified in such cases

    For additional information, refer to Composite Material and Composite Failure Model.

1 L. Gornet, “Finite Element Damage Prediction of Composite Structures"