LossyGear

Gear with mesh efficiency and bearing friction (stuck/rolling possible)

    LossyGear

Library

Modelica/Mechanics/Rotational/Components

Description

This component models the gear ratio and the losses ofa standard gear box in a reliable way including the stuck phasesthat may occur at zero speed. The gear boxes that canbe handled are fixed in the ground or on a moving support, have one input and oneoutput shaft, and are essentially described by the equations:

             flange_a.phi  = i*flange_b.phi;-(flange_b.tau - tau_bf_b) = i*eta_mf*(flange_a.tau - tau_bf_a);// or        -flange_b.tau = i*eta_mf*(flange_a.tau - tau_bf_a - tau_bf_b/(i*eta_mf));

where

  • i is the constant gear ratio,
  • eta_mf = eta_mf(w_a) is the mesh efficiency due to the friction between the teeth of the gear wheels,
  • tau_bf_a = tau_bf_a(w_a) is the bearing friction torque on the flange_a side,
  • tau_bf_b = tau_bf_b(w_a) is the bearing friction torque on the flange_b side, and
  • w_a = der(flange_a.phi) is the speed of flange_a

The loss terms "eta_mf", "tau_bf_a" and "tau_bf_b" are functions of theabsolute value of the input shaft speed w_a and of the energyflow direction. They are defined by parameter lossTable[:,5] where the columns of this table have the followingmeaning:

|w_a| eta_mf1 eta_mf2 |tau_bf1| |tau_bf2|
... ... ... ... ...
... ... ... ... ...

with

|w_a| Absolute value of angular velocity of input shaft flange_a
eta_mf1 Mesh efficiency in case that flange_a is driving
eta_mf2 Mesh efficiency in case that flange_b is driving
|tau_bf1| Absolute resultant bearing friction torque with respect to flange_a in case that flange_a is driving
(= |tau_bf_a*eta_mf1 + tau_bf_b/i|)
|tau_bf2| Absolute resultant bearing friction torque with respect to flange_a in case that flange_b is driving
(= |tau_bf_a/eta_mf2 + tau_bf_b/i|)

With these variables, the mesh efficiency and the bearing frictionare formally defined as:

if (flange_a.tau - tau_bf_a)*w_a > 0 or   (flange_a.tau - tau_bf_a) == 0 and w_a > 0 then   eta_mf := eta_mf1   tau_bf := tau_bf1elseif (flange_a.tau - tau_bf_a)*w_a < 0 or       (flange_a.tau - tau_bf_a) == 0 and w_a < 0 then   eta_mf := 1/eta_mf2   tau_bf := tau_bf2else // w_a == 0   eta_mf and tau_bf are computed such that der(w_a) = 0end if;-flange_b.tau = i*(eta_mf*flange_a.tau - tau_bf);

Note, that the losses are modeled in a physically meaningful way takinginto account that at zero speed the movement may be locked dueto the friction in the gear teeth and/or in the bearings.Due to this important property, this component can be used insituations where the combination of the componentsModelica.Mechanics.Rotational.IdealGear andModelica.Mechanics.Rotational.GearEfficiency will fail because,e.g., chattering occurs when using theModelica.Mechanics.Rotational.GearEfficiency model.

Acknowledgement:

  • The essential idea to model efficiency in this way is from Christoph Pelchen, ZF Friedrichshafen.
  • The article (Pelchen et.al. 2002), see Literature below, and the first implementation of LossyGear (up to version 3.1 of package Modelica) contained a bug leading to a non-converging solution in cases where the driving side is not obvious. This was pointed out by Christian Bertsch and Max Westenkirchner, Bosch, and Christian Bertsch proposed a concrete solution how to fix this bug, see Literature below.

Literature

Parameters

LossyGear_0

NameLabelDescriptionData TypeValid Values

mo_useSupport

useSupport

= true, if support flange enabled, otherwise implicitly grounded

Number

0
1

mo_ratio

ratio

Transmission ratio (flange_a.phi/flange_b.phi)

Scalar

mo_lossTable

lossTable

Array for mesh efficiencies and bearing friction depending on speed

Matrix of size Mx5

mo_useHeatPort

useHeatPort

=true, if heatPort is enabled

Number

0
1

mo_eta_mf1_0

eta_mf1_0

Scalar

mo_eta_mf2_0

eta_mf2_0

Scalar

mo_tau_bf1_0

tau_bf1_0

Scalar

mo_tau_bf2_0

tau_bf2_0

Scalar

mo_tau_bf_a_0

tau_bf_a_0

Scalar

mo_tau_aPos

tau_aPos

tau_aPos

Structure

mo_tau_aPos/fixed

fixed

Cell of scalars

true
false

mo_tau_aPos/start

start

Cell of scalars

true
false

mo_tau_etaPos

tau_etaPos

tau_etaPos

Structure

mo_tau_etaPos/fixed

fixed

Cell of scalars

true
false

mo_tau_etaPos/start

start

Cell of scalars

true
false

mo_startForward

startForward

startForward

Structure

mo_startForward/fixed

fixed

Cell of scalars

true
false

mo_startForward/start

start

Cell of scalars

true
false

mo_startBackward

startBackward

startBackward

Structure

mo_startBackward/fixed

fixed

Cell of scalars

true
false

mo_startBackward/start

start

Cell of scalars

true
false

mo_locked

locked

locked

Structure

mo_locked/fixed

fixed

Cell of scalars

true
false

mo_locked/start

start

Cell of scalars

true
false

mo_mode

mode

mode

Structure

mo_mode/fixed

fixed

Cell of scalars

true
false

mo_mode/start

start

Cell of scalars

LossyGear_1

NameLabelDescriptionData TypeValid Values

mo__nmodifiers

Number of Modifiers

Specifies the number of modifiers

Number

mo__modifiers

Modifiers

Add new modifier

Structure

mo__modifiers/varname

Variable name

Cell of strings

'phi_support'
'lossPower'
'phi_a'
'phi_b'
'sa'
'w_a'
'a_a'
'interpolation_result'
'eta_mf1'
'eta_mf2'
'tau_bf_a'
'tau_eta'
'tau_bf1'
'tau_bf2'
'quadrant1'
'quadrant2'
'quadrant3'
'quadrant4'
'quadrant1_p'
'quadrant2_p'
'quadrant3_m'
'quadrant4_m'
'tauLoss'
'tauLossMax'
'tauLossMin'
'tauLossMax_p'
'tauLossMin_m'
'ideal'
'tau_eta_p'
'tau_eta_m'

mo__modifiers/attribute

Attribute

Cell of strings

'start'
'fixed'

mo__modifiers/value

Value

Ports

NameTypeDescriptionIO TypeNumber

flange_a

implicit

Flange of left shaft

input

1

flange_b

implicit

Flange of right shaft

output

1

Port 3

implicit

Support/housing of component

input

mo_useSupport

Port 4

implicit

Optional port to which dissipated losses are transported in form of heat

input

mo_useHeatPort

See Also