AIM_SlipRing

Asynchronous induction machine with slipring rotor

    AIM_SlipRing

Library

Modelica/Electrical/Machines/BasicMachines/AsynchronousInductionMachines

Description

Model of a three phase asynchronous induction machine with slipring rotor.
Resistance and stray inductance of stator and rotor are modeled directly in stator respectively rotor phases, then using space phasor transformation and a stator-fixed AirGap model. The machine models take the following loss effects into account:

  • heat losses in the temperature dependent stator winding resistances
  • heat losses in the temperature dependent rotor winding resistances
  • friction losses
  • core losses (only eddy current losses, no hysteresis losses)
  • stray load losses

Default values for machine's parameters (a realistic example) are:

number of pole pairs p2
stator's moment of inertia0.29kg.m2
rotor's moment of inertia0.29kg.m2
nominal frequency fNominal50Hz
nominal voltage per phase100V RMS
nominal current per phase100A RMS
nominal torque161.4Nm
nominal speed1440.45rpm
nominal mechanical output24.346kW
efficiency92.7%
power factor0.875
stator resistance0.03Ohm per phase at reference temperature
reference temperature TsRef20°C
temperature coefficient alpha20s 01/K
rotor resistance0.04Ohm per phase at reference temperature
reference temperature TrRef20°C
temperature coefficient alpha20r 01/K
stator reactance Xs3Ohm per phase
rotor reactance Xr3Ohm per phase
total stray coefficient sigma0.0667
turnsRatio1effective ratio of stator and rotor current
stator operational temperature TsOperational20°C
rotor operational temperature TrOperational20°C
These values give the following inductances:
stator stray inductance per phaseXs * (1 - sqrt(1-sigma))/(2*pi*fNominal)
rotor stray inductanceXr * (1 - sqrt(1-sigma))/(2*pi*fNominal)
main field inductance per phasesqrt(Xs*Xr * (1-sigma))/(2*pi*f)

Parameter turnsRatio could be obtained from the following relationshipat standstill with open rotor circuit at nominal voltage and nominal frequency,
using the locked-rotor voltage VR, no-load stator current I0 and powerfactor PF0:
turnsRatio * VR = Vs - (Rs + j Xs,sigma) I0

Parameters

AIM_SlipRing_0

NameLabelDescriptionData TypeValid Values

mo_m

m

Number of phases

Scalar

mo_p

p

Number of pole pairs (Integer)

Scalar

mo_fsNominal

fsNominal

Nominal frequency

Scalar

mo_Jr

Jr

Rotor's moment of inertia

Scalar

mo_useSupport

useSupport

Enable / disable (=fixed stator) support

Number

0
1

mo_Js

Js

Stator's moment of inertia

Scalar

mo_useThermalPort

useThermalPort

Enable / disable (=fixed temperatures) thermal port

Number

0
1

mo_useTurnsRatio

useTurnsRatio

Use turnsRatio or calculate from locked-rotor voltage?

Scalar

true
false

mo_turnsRatio

turnsRatio

Effective number of stator turns / effective number of rotor turns

Scalar

mo_VsNominal

VsNominal

Nominal stator voltage per phase

Scalar

mo_VrLockedRotor

VrLockedRotor

Locked-rotor voltage per phase

Scalar

mo_internalTurnsRatio

internalTurnsRatio

Scalar

mo_TsOperational

TsOperational

Operational temperature of stator resistance

Scalar

mo_TrOperational

TrOperational

Operational temperature of rotor resistance

Scalar

mo_phiMechanical

phiMechanical

phiMechanical

Structure

mo_phiMechanical/fixed

fixed

Cell of scalars

true
false

mo_phiMechanical/start

start

Cell of scalars

mo_wMechanical

wMechanical

wMechanical

Structure

mo_wMechanical/fixed

fixed

Cell of scalars

true
false

mo_wMechanical/start

start

Cell of scalars

AIM_SlipRing_1

NameLabelDescriptionData TypeValid Values

mo_Rs

Rs

Stator resistance per phase at TRef

Scalar

mo_TsRef

TsRef

Reference temperature of stator resistance

Scalar

mo_alpha20s

alpha20s

Temperature coefficient of stator resistance at 20 degC

Scalar

mo_Lszero

Lszero

Stator zero sequence inductance

Scalar

mo_Lssigma

Lssigma

Stator stray inductance per phase

Scalar

mo_Lm

Lm

Stator main field inductance per phase

Scalar

mo_Lrsigma

Lrsigma

Rotor stray inductance per phase w.r.t. rotor side

Scalar

mo_Lrzero

Lrzero

Rotor zero sequence inductance w.r.t. rotor side

Scalar

mo_Rr

Rr

Rotor resistance per phase at TRef w.r.t. rotor side

Scalar

mo_TrRef

TrRef

Reference temperature of rotor resistance

Scalar

mo_alpha20r

alpha20r

Temperature coefficient of rotor resistance at 20 degC

Scalar

AIM_SlipRing_2

NameLabelDescriptionData TypeValid Values

mo_frictionParameters

frictionParameters

Friction loss parameter record

FromModelica('Modelica.Electrical.Machines.Losses.FrictionParameters')

mo_statorCoreParameters

statorCoreParameters

Stator core loss parameter record; all parameters refer to stator side

FromModelica('Modelica.Electrical.Machines.Losses.CoreParameters')

mo_strayLoadParameters

strayLoadParameters

Stray load loss parameter record

FromModelica('Modelica.Electrical.Machines.Losses.StrayLoadParameters')

mo_rotorCoreParameters

rotorCoreParameters

Rotor core loss parameter record; all parameters refer to rotor side

FromModelica('Modelica.Electrical.Machines.Losses.CoreParameters')

AIM_SlipRing_3

NameLabelDescriptionData TypeValid Values

mo__nmodifiers

Number of Modifiers

Specifies the number of modifiers

Number

mo__modifiers

Modifiers

Add new modifier

Structure

mo__modifiers/varname

Variable name

Cell of strings

'tauElectrical'
'tauShaft'
'powerBalance'
'vs'
'is'
'i_0_s'
'idq_ss'
'idq_sr'
'idq_rs'
'idq_rr'
'i_0_r'
'vr'
'ir'

mo__modifiers/attribute

Attribute

Cell of strings

'start'
'fixed'

mo__modifiers/value

Value

Ports

NameTypeDescriptionIO TypeNumber

flange

implicit

Shaft

input

1

plug_sp

implicit

Positive stator plug

input

2

plug_sn

implicit

Negative stator plug

output

1

plug_rp

implicit

Positive rotor plug

input

3

plug_rn

implicit

Negative rotor plug

output

2

Port 6

implicit

Support at which the reaction torque is acting

input

mo_useSupport

Port 7

implicit

input

mo_useThermalPort