BISTOP

The BISTOP function models a gap element.

Format

Bistop(x,x˙,x1,x2,k,e,cmax,d)

Description

It can be used to model forces acting on a body while moving in the gap between two boundary surfaces, which act as elastic bumpers. The properties of the two boundary surfaces can be tuned as desired.

Arguments

x
The expression used for the independent variable. For example, to use the z-displacement of I marker with respect to J marker as resolved in the reference frame of the RM marker as the independent variable, specify x as DZ({marker_i.idstring}, {marker_j.idstring}, {marker_rm.idstring}).
x˙
The time derivative of the independent variable. For example, if x is specified as above, then x˙ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaacaaaaa@371D@ will be VZ({marker_i.idstring}, {marker_j. idstring}, {marker_rm.idstring}).
x1
The lower bound of x . If x is less than x1 , the bistop function returns a positive value. The value of x1 must be less than the value of x2 .
x2
The upper bound of x . If x is greater than x2 , the bistop function returns a negative value. The value of x2 must be greater than the value of x1 .
k
The stiffness of the boundary surface interaction. It must be non-negative.
e
The exponent of the force deformation characteristic. For a stiffening spring characteristic, e must be greater than 1.0 and for a softening spring characteristic, e must be less than 1.0. It must always be positive.
cmax
The maximum damping coefficient. It must be non-negative.
d MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@3700@
The penetration at which the full damping coefficient is applied. It must be positive.

Definition

(1)
Bistop={max(k*(x1-x)e-Step(x,x1-d,cmax,x1,0)*x˙,0),if x<x10, if x1≤x≤x2min(-k*(x-x2)e-Step(x,x2,0,x2+d,cmax)*x˙,0),if x>x2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabMgacaqGZbGaaeiDaiaab+gacaqGWbGaaeypamaaceaabaqbaeqabiqaaaqaaiacaciC=d3=b2gacGaGac3=W9FGHbGaiaiGW9pC=hiEaiacaciG=d3=bIcacGaGac4=W9FGRbGaiaiGa+pC=hOkaiacaciG=d3=bIcacGaGac4=W9FG4bWaiaiGa+pC=VbaaSqaiaiGa+pC=lacaciG=d3=bgdaaeqcaciG=d3=aOGaiaiGa+pC=hylaiacaciG=d3=bIhacGaGac4=W9FGPaWaiaiGa+pC=ZbaaSqajaiGa+pC=hacaciG=d3=cGaGac4=W9FGLbaaaOGaiaiGa+pC=hylaiacaciG=d3=bofacGaGac4=W9FG0bGaiaiGa+pC=hyzaiacaciG=d3=bchacGaGac4=W9FGOaGaiaiGa+pC=hiEaiacaciG=d3=bYcacGaGac4=W9FG4bWaiaiGa+pC=VbaaSqaiaiGa+pC=lacaciG=d3=bgdaaeqcaciG=d3=aOGaiaiGa+pC=hylaiacaciG=d3=bsgacGaGac4=W9FGSaGaiaiGa+pC=h4yamacaciG=d3=BaaaleacaciG=d3=cGaGac4=W9FGTbGaiaiGa+pC=hyyaiacaciG=d3=bIhaaeqcaciG=d3=aOGaiaiGa+pC=hilaiacaciG=d3=bIhadGaGac4=W9=gaaWcbGaGac4=W9VaiaiGa+pC=hymaaqajaiGa+pC=dGccGaGac4=W9FGSaGaiaiGa+pC=himaiacaciG=d3=bMcacGaGac4=W9FGQaWaiaiGa+pC=FbiaeacaciG=d3=cGaGac4=W9FG4baaleqcaciG=d3=bGaGac4=W9FcLbkacGaiagOiGaaakiacaciG=d3=bYcacGaGac4=W9pMc8UaiaiGa+pC=JPaVlacaciG=d3=bcdacGaGac4=W9FGPaGaiaiGa+pC=hilaiacaciG=d3=ykW7cGaGac4=W9pMc8UaiaiGa+pC=hyAaiacaciG=d3=bAgacGaGac4=W9FGGaGaiaiGa+pC=hiEaiacaciG=d3=bYdacGaGac4=W9FG4bWaiaaGBaaaleacaaOaiaaGbgdaaeqcaaiaaOabaeqabaGaiaiGaaaKaeimaiacaciaaajabYcacGaGacmaqcqGGaGaiaiGaaaKaeyAaiacaciaaajabAgacGaGacmaqcqGGaGaiaiGaaaKaeiEamacaciaaajaBaaaleacaciaaajacGaGacaaqcqGXaaabKaGacaaqcaakiacaciaaajabokacGaGacaaqcqG4bGaiaiGaaaKae4OaiacaciaaajabIhadGaGacaaqcWgaaWcbGaGacaaqcGaiaiGaaaKaeOmaaqajaiGaaaKaaaakeaacaqGTbGaaeyAaiaab6gacaqGOaGaaeylaiaabUgacaqGQaGaaeikaiaabIhacaqGTaGaaeiEamaaBaaaleaacaqGYaaabeaakiaabMcadaahaaWcbeqaaiaabwgaaaGccaqGTaGaae4uaiaabshacaqGLbGaaeiCaiaabIcacaqG4bGaaeilaiaabIhadaWgaaWcbaGaaeOmaaqabaGccaqGSaGaaeimaiaabYcacaqG4bWaaSbaaSqaaiaabkdaaeqaaOGaae4kaiaabsgacaqGSaGaae4yamaaBaaaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaaeykaiaabQcadaWfGaqaaiaabIhaaSqabeaajugOaiacaciiaakabkciaaGccaqGSaGaaGPaVlaaykW7caqGWaGaaeykaiaabYcacaaMc8UaaGPaVlaabMgacaqGMbGaaeiiaiaabIhacaqG+aGaaeiEamaaBaaaleaacaqGYaaabeaaaaaaaOGaay5Eaaaaaa@E9A4@

Example

<Force_Vector_TwoBody
     id                    = "30101"
     type                  = "ForceOnly"
     i_marker_id           = "30102031"
     j_floating_marker_id  = "30101031"
     ref_marker_id         = "30101010"
     fx_expression         = "BISTOP(DX(30102030,30101010,30101010),VX(30102030,30101010,30101010),0.5,9.5,10000000,2.1,1,0.001)"
     fy_expression         = "0"
     fz_expression         = "0"
  />