block Product "Output product of the two inputs"
extends Interfaces.ComplexSI2SO;
equation
y = u1Internal * u2Internal;
annotation (
Documentation(info = "<html>\n<p>\nThis blocks computes the output <code>y</code> (element-wise)\nas <em>product</em> of the corresponding elements of\nthe two inputs <code>u1</code> and <code>u2</code>. Optionally, either input <code>u1</code> or <code>u2</code> or both inputs can be processed conjugate complex, when parameters <code>useConjugateInput1</code> and <code>useConjugateInput2</code> are <code>true</code>, respectively. Depending on <code>useConjugateInput1</code> and <code>useConjugateInput2</code> the internal signals represent either the original or the conjugate complex input signal.\n</p>\n<blockquote><pre>\ny = u1Inernal * u2Internal;\n</pre></blockquote>\n\n<p><strong>Example:</strong> If <code>useConjugateInput1 = true</code> and <code>useConjugateInput2 = false</code> the output signal <code>y = Modelica.ComplexMath.conj(u1) * u2</code>.</p>\n\n</html>"),
Icon(
coordinateSystem(
preserveAspectRatio = true,
extent = {
{-100, -100},
{100, 100}}),
graphics = {
Line(
points = {
{-100, 60},
{-40, 60},
{-30, 40}},
color = {85, 170, 255}),
Line(
points = {
{-100, -60},
{-40, -60},
{-30, -40}},
color = {85, 170, 255}),
Line(
points = {
{50, 0},
{100, 0}},
color = {85, 170, 255}),
Line(
points = {
{-30, 0},
{30, 0}},
color = {85, 170, 255}),
Line(
points = {
{-15, 25.99},
{15, -25.99}},
color = {85, 170, 255}),
Line(
points = {
{-15, -25.99},
{15, 25.99}},
color = {85, 170, 255}),
Ellipse(
extent = {
{-50, 50},
{50, -50}},
lineColor = {85, 170, 255})}));
end Product;