block Acos "Output the arc cosine of the input"
extends Interfaces.ComplexSISO;
equation
y = Modelica.ComplexMath.acos(uInternal);
annotation (
Icon(
coordinateSystem(
preserveAspectRatio = true,
extent = {
{-100, -100},
{100, 100}}),
graphics = {
Polygon(
points = {
{0, 90},
{-8, 68},
{8, 68},
{0, 90}},
lineColor = {192, 192, 192},
fillColor = {192, 192, 192},
fillPattern = FillPattern.Solid),
Line(
points = {
{-80, 80},
{-79.2, 72.8},
{-77.6, 67.5},
{-73.6, 59.4},
{-66.3, 49.8},
{-53.5, 37.3},
{-30.2, 19.7},
{37.4, -24.8},
{57.5, -40.8},
{68.7, -52.7},
{75.2, -62.2},
{77.6, -67.5},
{80, -80}},
color = {85, 170, 255}),
Line(
points = {
{0, -88},
{0, 68}},
color = {192, 192, 192}),
Line(
points = {
{-90, -80},
{68, -80}},
color = {192, 192, 192}),
Polygon(
points = {
{90, -80},
{68, -72},
{68, -88},
{90, -80}},
lineColor = {192, 192, 192},
fillColor = {192, 192, 192},
fillPattern = FillPattern.Solid),
Text(
extent = {
{-86, -14},
{-14, -62}},
textColor = {192, 192, 192},
textString = "acos")}),
Documentation(info = "<html>\n<p>\nThis blocks computes the output <code>y</code> as the\n<em>cosine-inverse</em> of the input <code>u</code>. Optionally, the input <code>u</code> can be processed conjugate complex, when parameter <code>useConjugateInput</code> is <code>true</code>. Depending on <code>useConjugateInput</code> the internal signal <code>uInternal</code> represents either the original or the conjugate complex input signal.\n</p>\n<blockquote><pre>\ny = <strong>acos</strong>(uInternal);\n</pre></blockquote>\n\n<p>\n<img src=\"modelica://Modelica/Resources/Images/Math/acos.png\"\n alt=\"acos.png\">\n</p>\n\n</html>"));
end Acos;