
Altair® AcuSolve® 2025

AcuTrace Command Reference Manual

Updated: 11/13/2024

Contents

AcuTrace Command Reference Manual...3

Global Commands... 4

EQUATION.. 5
FLOW_FIELD... 9
USER_EQUATION... 15
COUPLING_FIELDS...18
FINITE_MASS.. 31
FINITE_MASS_BOUNDARY_CONDITION.. 37

Solution Strategy Commands.. 41

AUTO_SOLUTION_STRATEGY...42
TIME_SEQUENCE... 44
STAGGER.. 48
TRACE_PARAMETERS..51

Particle Data Commands...53

PARTICLE_SEED...54
USER_EQUATION_INITIAL_CONDITION...67

Output Commands.. 71

TRACE_OUTPUT... 72
TIME_CUT_OUTPUT.. 75
POINCARE_OUTPUT..78
INTERPOLATE_OUTPUT... 81

Functional Commands..83

RUN... 84
INCLUDE...85
ASSIGN.. 86
QUIT.. 87

Intellectual Property Rights Notice... 88
Technical Support... 94

Index.. 95

2

AcuTrace Command Reference
Manual 1

AcuTrace Command Reference Manual

Commands of AcuTrace, a particle tracer that runs as a post-processor to or a co-processor with
AcuSolve.

AcuTrace computes particle traces as a series of segments using a fifth-order time-discontinuous
Galerkin (TDG) method with error control for solving ordinary differential equations. AcuTrace solves the
particle motion and stretch evolution equations. These can be augmented by one or more user defined
evolution equations. It computes traces for unsteady as well as steady flow fields, for flows with mesh
motion as well as without, and for flows computed on meshes with interface surfaces. AcuTrace can also
compute traces for flows on meshes with multiple reference frames in two ways; by converting flow
velocities to the local reference frame or by treating the boundaries between stationary and rotating
reference frames as interface surfaces and the flow as pseudotransient.

To solve a problem with AcuTrace, you must first run AcuSolve. This can be done concurrently. You
must also create a trace input file. Once these two steps are complete, AcuTrace is invoked with the
command acuRunTrace. See the AcuSolve Programs Reference Manual for further details.

The trace input file consists of one or more commands, each having zero or more parameters. These
commands define the problem parameters, such as solution strategies, initial conditions and output.

The command style for AcuTrace, command format, command qualifier usage, parameter format,
parameter operators and functions, is identical to the style used by AcuSolve. For these details, see the
AcuSolve Command Reference Manual.

Global Commands 2

Global Commands

This chapter contains the commands that define the global description of a problem or provide data that
can be used globally.

This chapter covers the following:

• EQUATION (p. 5)

• FLOW_FIELD (p. 9)

• USER_EQUATION (p. 15)

• COUPLING_FIELDS (p. 18)

• FINITE_MASS (p. 31)

• FINITE_MASS_BOUNDARY_CONDITION (p. 37)

Altair® AcuSolve® 2025
Global Commands p.5

EQUATION
Specifies the equation systems present in the problem.

Type
AcuTrace Command

Syntax
EQUATION {parameters}

Qualifier
This command has no qualifier.

Parameters
particle (enumerated) [=massless]

Type of the particle motion equation.

massless Massless particle equation.

finite_mass Finite mass particle equation.

stretch (enumerated) [=none]
Type of the stretch equation.

none No stretch equation present.

standard Standard stretch equation.

user_equations (list) [={}]
List of user equations to be used.

number_particle_components or num_part_comps (integer) >=0 [=0]
Number of particle components.

Description
The EQUATION command specifies the existence and types of the equation systems and solution fields
present in the problem. For example, to specify a problem with particle position using the massless
model and stretch, you need:

EQUATION {
 particle = massless
 stretch = standard
}

while to use the finite mass model instead, you need:

EQUATION {
 particle = finite_mass
 stretch = standard
}

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.6

In the massless model, the velocity of a particle always equals the flow velocity at the particle's
location. In the finite mass model, the particle velocity does not necessarily equal the flow velocity.
Instead, the particles have mass and are subject to forces such as drag and gravity.

The massless particle and stretch equations are:

(1)

where denotes the derivative in the particle frame of reference, t is time, is the particle position,

 is the flow velocity, is the transpose of the velocity gradient, and is the stretch vector.

If the parameter turbulence_trace in the TRACE_PARAMETERS command is set to on, the massless
particle equation solved is not the above but instead

(2)

where is a random perturbation to the particle velocity based on the eddy viscosity.

The finite mass particle equations are

(3)

where is the particle velocity, is the particle mass, and is the sum of the forces acting on the
particle. If the parameter turbulence_trace in the TRACE_PARAMETERS command is set to on, then the

values of used in evaluating are replaced by .

Note: Particles are assumed to be spherical of constant (subgrid scale) size.

The particle and stretch equations can be augmented by one or more user equations. The user
equations can either be evolution equations of the form

(4)

where is the set of user-defined particle variables in the current equation, is the set of user-

defined variables from the other user equations (if any), is the set of flow variables, and is the
set of user equation parameters; or evaluation equations of the form

(5)

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.7

The user equations present in the problem are specified by the user_equations parameter. Each user
equation specified by the user_equations parameter must be defined by a USER_EQUATION command.

For example, evolution equations tparticle and cparticle for particle temperature and composition could
be defined. To include these equations in a problem, one could have:

EQUATION {
...
 user_equations = {tparticle, cparticle}
}
USER_EQUATION("tparticle") {
 user_function = "usrTparticle"
 num_variables = 1
...
}
USER_EQUATION("cparticle") {
 user_function = "usrCparticle"
 num_variables = 2 # 2 species example
...
}

The EQUATION command specifies the existence and types of the equation systems and solution fields
present in the problem. The TIME_SEQUENCE and STAGGER commands must then be used to request the
solution for the specified equations. For example, to solve for particle position and stretch, you could
have:

EQUATION {
 particle = massless
 stretch = standard
}
TIME_SEQUENCE {
 staggers = { "particle", "stretch" }
...
}
STAGGER("particle") {
 equation = particle
...
}
STAGGER("stretch") {
 equation = stretch
...
}

As with particle and stretch equations, the TIME_SEQUENCE and STAGGER commands must be used
to request the solution for the specified user equations. For example, to solve for particle position,
temperature, and composition, you could have:

EQUATION {
 particle = massless
 user_equations = {tparticle, cparticle}
}
TIME_SEQUENCE {
 staggers = { "particle", "tparticle", "cparticle"}
...
}
STAGGER("particle") {
 equation = particle
...
}

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.8

STAGGER("tparticle") {
 equation = user_equation
 user_equation = "cparticle"
...
}
STAGGER("cparticle") {
 equation = user_equation
 user_equation = "tparticle"
...
}
USER_EQUATION("tparticle") {
 user_function = "usrTparticle"
 num_variables = 1
...
}
USER_EQUATION("cparticle") {
 user_function = "usrCparticle"
 num_variables = 2
...
}

If an equation is defined by the EQUATION command, but no active stagger references that equation, the
solution field of that equation is unaltered throughout the analysis.

Particle components are a generalization of a marker variable; they can also be considered a
generalization of species or composition. When number_particle_components is greater than
zero, particle components are initialized in the PARTICLE_SEED command. The values of the particle
components are constant in time but they may vary over the particles in the problem according to how
they are initialized.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.9

FLOW_FIELD
Specifies the flow field used in the problem.

Type
AcuTrace Command

Syntax
FLOW_FIELD {parameters}

Qualifier
This command has no qualifier.

Parameters
flow_field_type or mode (enumerated) [=static]

Type of AcuSolve flow data.

static or steady Steady flow.

dynamic or transient Transient flow.

cyclic_dynamic or cyclic Cyclic flow.

pseudodynamic or
pseudotransient

Pseudodynamic flow.

one_way_coupling One way coupling with AcuSolve.

two_way_coupling Two way coupling with AcuSolve.

from_run or run (integer) [=0]
Number of the AcuSolve run used to define the flow field. If from_run is set to 0, the last run
in the working directory is assumed. Not used if flow_field_type is one_way_coupling or
two_way_coupling.

from_directory or dir (string) [="ACUSIM.DIR"]
All internal files are read from or stored in this directory. This directory does not need to be on the
same file system as the user-supplied input files.

from_problem or problem (string) [no default]
The name of the problem is specified via this option. This name is used to build internal file names
and to generate output files. The names of all generated output files start with the problem name.

from_time_step or step (integer) [=0]
The time step used to define the flow data. If from_time_step is set to 0 the last time step
of from_run in the working directory is assumed. Used only if flow_field_type is static or
pseudodynamic.

time_step_type (enumerated) [=all]
The type of time step specification. Used only if flow_field_type is dynamic.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.10

all Use all available time steps.

time_step_series or series Use a user-defined series of time steps.

cyclic_time_step_type (enumerated) [=range]
The type of time step specification. Used only if flow_field_type is cyclic_dynamic.

range Use a range of time steps.

time_step_series or series Use a user-defined series of time steps.

time_step_series or steps (array) [={}]
List of time step numbers defining the flow field. Used only if flow_field_type is dynamic and
time_step_type is series or flow_field_type is cyclic_dynamic and cyclic_time_step_type is
time_step_series.

first_cyclic_time_step or first_step (integer) [=0]
The first step number in a range of time steps. Used only if flow_field_type is cyclic_dynamic
and cyclic_time_step_type is range.

last_cyclic_time_step or last_step (integer) [=0]
The last step number in a range of time steps. Used only if flow_field_type is cyclic_dynamic
and cyclic_time_step_type is range.

cyclic_end_time_steps (enumerated) [=include_first]
The specification of how the end points of a cycle of steps are used. Used only if
flow_field_type is cyclic_dynamic.

include_first The flow data for the first step is used as the flow for the last
step. The data for the last step is ignored.

include_last The flow data for the last step is used as the flow for the first
step. The data for the first step is ignored.

include_both The flow data from both the first and the last steps are used.

average_both The flow data at the cycle end points is the average of the first
and last steps.

mesh_motion (boolean) [=on]
Flag specifying if mesh motion is active. Ignored if there is no mesh motion in the AcuSolve
solution. Not used if flow_field_type is pseudodynamic.

pseudodynamic_mesh_update (enumerated) [=max_angle]
Flag specifying how often the mesh is rotated if flow_field_type is pseudodynamic. Flag
specifying if mesh motion is active. Ignored if there is no mesh motion in the AcuSolve solution.
Not used if flow_field_type is pseudodynamic.

pseudodynamic_time_increment (real) [=1]
The time between mesh update. Used only if flow_field_type is pseudodynamic and
pseudodynamic_mesh_update is time_increment.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.11

extended_flow_variables (list) [={}]
List of extended variables in the AcuSolve database accessible to user equations.

coupling_socket_port (integer) [=20000]
Code port number for establishing socket connection to AcuSolve. Used only if flow_field_type
is one_way_coupling.

Description
The FLOW_FIELD command specifies the AcuSolve flow data used to advance the particle trace equations
and defines how that data is used. AcuTrace can use flow data either from a completed AcuSolve
simulation or from a concurrently running AcuSolve simulation.

For a completed AcuSolve simulation, there are up to four possible ways in which the flow data can be
used.

When flow_field_type is steady, a single time step from a completed simulation is used to define a
steady flow field with which to advance the particles. The particle simulation itself is of course transient
because the particles are moving. By default, the last available step is used. This is generally the best
practice, but any other step could be set with the step parameter, for example,

FLOW_FIELD {
 ...
 flow_field_type = static
 step = 10
 ...
}

For dynamic flow, a set of time steps from an AcuSolve simulation is used to define a transient flow
field. For particle times between time steps, the flow field is interpolated in time. Before the earliest
time and after the last time, the flow field is extrapolated as constant in time. By default, all the steps
from a transient solution are used. This is generally the best practice, but a subset of steps can be
selected, for example,

FLOW_FIELD {
 ...
 flow_field_type = dynamic
 time_step_type = series
 steps = { 2, 4, 6, 8 }
 ...
}

The cyclic flow field type defines a transient flow field in a similar manner, except that the flow repeats
in time after the last time step is reached. This option is useful for tracing particles in time-periodic, for
example, cyclic, flows in which the particle trace time is much greater than the flow cycle time because
a relatively short flow simulation can be used. When using this option, one should be careful that the
flow is indeed cyclic within a reasonable tolerance and that the set of time steps truly represents one or
more complete flow cycles.

When cyclic_end_time_steps equals include_first, include_last, or average_both, the cycle time
is the last time in the cycle minus the first time in the cycle. When cyclic_end_time_steps equals
include_both, the cycle time is the last time in the cycle minus the first time in the cycle plus the
difference between the last two steps in the cycle.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.12

For example, for the command

FLOW_FIELD {
 ...
 flow_field_type = cyclic
 cyclic_time_step_type = series
 steps = { 1, 2, 3 }
 ...
}

and assuming the times of steps 1-3 are 10, 16, and 20, the cycle time is 20-10 = 10 when
cyclic_end_time_steps equals include_first, include_last, or average_both, and 20-10 + (20 - 16) =
14 when cyclic_end_time_steps equals include_both.

When cyclic_end_time_steps equals include_first, include_last, or average_both, the flow fields at
the first and last steps of the cycle are considered the same. When cyclic_end_time_steps equals
include_first, the flow field from the first step is used; for the example above, the flow field used by
AcuTrace would cycle 1, 2, 1, 2, and so on. When cyclic_end_time_steps equals include_last, the flow
field from the last step is used; in the example, the flow field would cycle 2, 3, 2, 3, and so on. When
cyclic_end_time_steps equals average_both, the flow field at the the cycle endpoint is the average
of the fields at the first and last step; in the example, the flow field would cycle 2, average of 2 and 3,
2, average of 2 and 3, and so on. When cyclic_end_time_steps equals include_both, all steps in the
cycle are used; in the example, the flow field would cycle 1, 2, 3, 1, 2, 3, and so on.

The AcuTrace times over the course of the cycle definition are used as is from the AcuSolve run. Outside
the times of the cycle definition, the times map into the times in the cycle definition. For example,
consider the following inputs:

FLOW_FIELD {
 ...
 flow_field_type = cyclic
 cyclic_time_step_type = series
 steps = { 100, 200, 300, 400, 500 }
 cyclic_end_time_steps = include_both
 ...
}

and suppose that the times corresponding to these steps in the AcuSolve run are 10, 20, 30, 40, and
50. Then these same times are used in AcuTrace in the following way: at time 10 in the AcuTrace run,
the flow field corresponds to the AcuSolve flow field at step 100, time 20 corresponds to step 200, and
so on. Before time 10 or after time 50, the AcuSolve solution repeats: time 60 in the AcuTrace run uses
the flow field from time 10 in the AcuSolve solution, time 70 uses the flow field from time 20, and so
on.

Note: Time 0 uses the AcuSolve flow field at time 50.

When flow_field_type is pseudodynamic, a single step from an AcuSolve simulation with multiple
reference frames is used to create a time varying flow field with mesh motion. Before particles are
advanced, the boundaries between element sets with different reference frames are converted to
sliding interface surfaces. As the particle trace advances, the mesh, flow velocity, and other flow
variables in the non-stationary reference frames are rotated in time according to the reference frame

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.13

definitions. The flow data so generated approximates the flow data that AcuSolve would produce for a
truly dynamic simulation with mesh motion and sliding interface surfaces.

With pseudodynamic flow, the flow data and mesh do not update continuously but instead are
updated at regular intervals, just as if the data were being read from a transient AcuSolve solution.
If pseudodynamic_mesh_update equals time_increment, the update interval is simply the value
of pseudodynamic_time_increment. If, on the other hand, pseudodynamic_mesh_update equals
max_angle, the solution update interval is set to the time it takes the fastest rotating reference frame
in the AcuSolve solution to rotate though an angle of pseudodynamic_max_angle. For example if there
are two rotating reference frames in the AcuSolve solution with rotation speeds of 5 and 20 rpm, and
pseudodynamic_max_angle equals 10, the update interval is set to 10/(360*20) * 60 = 1/12 second.

When flow_field_type is pseudodynamic, by default the last step of the simulation is used. This is
generally the best practice. However, any other step could be set with the step parameter, for example,

FLOW_FIELD {
 ...
 flow_field_type = pseudodynamic
 step = 10
 ...
}

The command

acuTrans -out -ts A -outv ,

will list the available steps in an AcuSolve run.

Note: There is a "," at the end of the command.

The flow data from a transient concurrently running AcuSolve simulation is used when
flow_field_type is one_way_coupling. The particle trace is identical to what AcuTrace would compute
with a flow_field_type of dynamic if the AcuSolve simulation first ran to completion. The advantage
in using a flow_field type of one_way_coupling is that the AcuSolve disk requirements for long
running particle traces in transient flow fields can be greatly reduced. One way coupling is also called
unidirectional coupling.

When flow_field_type is two_way_coupling, the flow data from a transient concurrently running
AcuSolve simulation is used as well. In addition, particle source terms and values are sent from
AcuTrace to AcuSolve. The source terms and values sent as well as how AcuSolve uses them are
specified in the COUPLING_FIELDS command. See the COUPLING_FIELDS section of this manual for more
details. Two way coupling is also called bidirectional coupling.

The AcuSolve flow nodal output accessible to user equations always includes flow velocity, pressure,
temperature, eddy viscosity, species and velocity gradient. In addition, some or all of the available
extended nodal output values can be made accessible through the extended_flow_variables
parameter. For example,

extended_flow_variables = { "material_viscosity", "strain_rate_invariant_2" }

makes material viscosity and the second strain rate invariant available for user equations. To use
extended output values in AcuTrace, you should make sure that the proper AcuSolve commands are

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.14

used in setting up the AcuSolve run providing the data to AcuTrace. The nodal output values available in
an existing AcuSolve run can be determined by executing:

acuTrans -out -extout -to stats

By default, AcuTrace uses nodal mesh displacements if they are provided in the AcuSolve database. It is
possible to ignore these, for example set them to 0, by setting the parameter mesh_motion to off. This
is not recommended, however. If there are no mesh displacements, a value of on for mesh_motion is
ignored. The mesh_motion parameter is ignored if the flow_field_type is pseudodynamic.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.15

USER_EQUATION
Specifies a user equation in the problem.

Type
AcuTrace Command

Syntax
USER_EQUATION ("name") {parameters...}

Qualifier
User-given name.

Parameters
user_function (string) [no default]

Name of the C function to use.

num_variables or num_vars (integer) >=1 [1]
Number of values returned by the equation, that is, the size of the output array of the equation.

user_values (array) [={}]
User-defined constant parameters supplied to the equation.

user_strings (list) [={}]
List of user-defined constant strings supplied to the equation.

type (enumerated) [=evolve]
Controls how the user equation is used in the particle trace. In both cases, u is the variable
advanced and f is the user equation.

evolve User equation is the right hand side of the evolution equation
du/dt=f.

evaluate User equation is the right hand side of u=f.

Description
The USER_EQUATION command defines an equation that can then be included in the particle trace
simulation with the user_equations parameter of the EQUATION command. The full definition of a
user equation consists a user-defined function written in the C programming language plus additional
constants provided by the user_values and user_strings parameters. A single C function can
therefore be used to define multiple user equations by using different values of these constants in
multiple USER_EQUATION commands. See the AcuTrace User-Defined Function Manual for a detailed
description of user-defined functions for AcuTrace.

In the following example, there are two user equations ener and temp. The first is used as the source
term in an evolution equation for particle energy, and the second is used to compute the particle
temperature from the particle energy. There are two constants provided by you: the product of the
particle mass and the particle specific heat; and the thermal conductivity. The constants have values of

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.16

two and three here. The two C functions are named usrEner and usrTemp. The input commands may
then be given as:

EQUATION {
...
 user_equations = {ener, temp}
}
USER_EQUATION("ener") {
 user_function = "usrEner"
 num_variables = 1
 user_strings = {}
 user_values = {3,2}
 type = evolve
}
USER_EQUATION("temp") {
 user_function = "usrTemp"
 num_variables = 1
 user_strings = {}
 user_values = {2}
 type = evaluate
}

where the user-defined functions usrEner and usrTemp may be implemented as:

#include "acusim.h"
#include "ufp.h"
UFP_PROTOTYPE(usrEner);
Void usrEner (
 UfpHd ufpHd, /* Opaque handle for accessing data
 */
 Integer nItems, /* Number of items in outVec
 */
 Integer vecDim, /* Vector dimension of outVec
 */
 Real* outVec, /* Output Vector
 */
)
{
 Real* usrVals ; /* user values
 */
 Real* fluid ; /* fluid temperature
 */
 Real* particle ; /* particle energy
 */
 Real mpXcp ; /* mass * c_p for particle
 */
 Real cond ; /* conductivity
 */
 Real* jac ; /* source jacobian
 */
 cond = usrVals[0] ;
 mpXcp = usrVals[1] ;
 t_fluid = ufpGetFlowData(ufpHd, UFP_FLOW_TEMPERATURE) ;
 h_particle = ufpGetUdfData(ufpHd, 0) ;
 outVec[0] = -cond * (h_particle[0] / mpXcp - t_fluid[0]) ;
 jac = ufpGetJac(ufpHd, UFP_JAC_UDF_VARIABLES) ;
 jac[0] = -cond / mpXcp ;
}
UFP_PROTOTYPE(usrTemp);
Void usrTemp (

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.17

 UfpHd ufpHd, /* Opaque handle for accessing data
 */
 Integer nItems, /* Number of items in outVec
 */
 Integer vecDim, /* Vector dimension of outVec
 */
 Real* outVec, /* Output Vector
 */
)
{
 Real* usrVals ; /* user values
 */
 Real* h_particle ; /* particle energy
 */
 Real mpXcp ; /* mass * c_p for particle
 */
 usrVals = ufpGetUsrVals(ufpHd) ;
 mpXcp = usrVals[0] ;
 h_particle = ufpGetUdfData(ufpHd, "ener") ;
 outVec[0] = h_particle[0] / mpXcp ;
}

In order for AcuTrace to access these functions, the source file containing them must be compiled and
linked into a shared library. The scripts AcuMakeLib, under Linux, and AcuMakeDll, under Windows, may
be used for this purpose.

Assume the function implementations are in the file usrTemp.c. The functions are compiled and linked
into a shared library libusr.so by issuing the command:

acuMakeLib -src usrTemp.c

The shared library libusr.so is automatically loaded by AcuTrace when it is run.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.18

COUPLING_FIELDS
Specifies which AcuTrace fields couple with AcuSolve and how they couple when flow_field_type is
two_way_coupling.

Type
AcuTrace Command

Syntax
COUPLING_FIELDS {parameters}

Qualifier
This command has no qualifier.

Parameters
coupling_iterations or coup_iters (integer) >=1 [=1]

Number of AcuTrace iterations per AcuSolve time step. An AcuTrace iteration is an advance of all
the particles from the beginning to the end of the AcuSolve time step.

momentum_type (enumerated) [=none]
Type of momentum coupling to AcuSolve. Specifies what type of momentum data is sent to
AcuSolve.

none No coupling (no data sent).

flux Momentum source terms are sent to AcuSolve.

momentum_flux_type (enumerated) [=finite_mass]
When momentum_type equals flux, specifies how the momentum source terms sent to AcuSolve
are computed.

finite_mass Momentum source terms are computed according to the finite
mass model.

temperature_type (enumerated) [=none]
Type of temperature coupling to AcuSolve. Specifies what type of temperature data is sent to
AcuSolve.

none No coupling (no data sent).

flux Temperature source terms are sent to AcuSolve.

value Temperature values are sent to AcuSolve.

temperature_flux_type (enumerated) [=user_equation]
When temperature_type equals flux, specifies how the temperature source terms sent to
AcuSolve are computed.

user_equation Temperature source terms are computed in a user equation.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.19

temperature_value_type (enumerated) [=user_equation]
When temperature_type equals value, specifies how the temperature values sent to AcuSolve are
computed.

user_equation Temperature values are computed in a user equation.

component Temperature values are set equal to a particle component.

temperature_user_equation (string) [No default]
When temperature_type equals flux and temperature_flux_type equals user_equation or
temperature_type equals value and temperature_value_type equals user_equation, specifies
which AcuTrace user equation provides the temperature values sent to AcuSolve.

temperature_user_index (integer) >=0 [=0]
When temperature_type equals flux and temperature_flux_type equals user_equation or
temperature_type equals value and temperature_value_type equals user_equation, specifies
which term in the user equation source term is used. temperature_user_index is 0 based. It
must be greater than or equal to 0 and strictly less than the number of variables in the user
equation.

temperature_component_index (integer) >=0 [=0}
When temperature_type equals value and temperature_value_type equals component, specifies
which particle component is used. temperature_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

temperature_scaling_factor (real) [=1.0]
When temperature_type equals value, the temperature values sent to AcuSolve are multiplied by
this value before they are sent.

species_1_type (enumerated) [=none]
Type of species 1 coupling to AcuSolve. Specifies what type of species 1 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 1 source terms are sent to AcuSolve.

value Species 1 values are sent to AcuSolve.

species_1_flux_type (enumerated) [=user_equation]
When species_1_type equals flux, specifies how the species 1 source terms sent to AcuSolve are
computed.

user_equation
Species 1 source terms are computed in a user equation

species_1_value_type (enumerated) [=component]
When species_1_type equals value, specifies how the species 1 values sent to AcuSolve are
computed.

user_equation
Species 1 values are computed in a user equation.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.20

component
Species 1 values are set equal to a particle component.

species_1_user_equation (string) [No default]
When species_1_type equals flux and species_1_flux_type equals user_equation or
species_1_type equals value and species_1_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 1 values sent to AcuSolve.

species_1_user_index (integer) >=0 [=0]
When species_1_type equals flux and species_1_flux_type equals user_equation or
species_1_type equals value and species_1_value_type equals user_equation, specifies which
term in the user equation source term is used. species_1_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_1_component_index (integer) >=0 [=0]
When species_1_type equals value and species_1_value_type equals component, specifies
which particle component is used. species_1_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_1_scaling_factor (real) [=1.0]
When species_1_type equals value, the species 1 values sent to AcuSolve are multiplied by this
value before they are sent.

species_2_type (enumerated) [=none]
Type of species 2 coupling to AcuSolve. Specifies what type of species 2 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 2 source terms are sent to AcuSolve.

value Species 2 values are sent to AcuSolve.

species_2_flux_type (enumerated) [=user_equation]
When species_2_type equals flux, specifies how the species 2 source terms sent to AcuSolve are
computed.

user equation Species 2 source terms are computed in a user equation.

species_2_value_type (enumerated) [=component]
When species_2_type equals value, specifies how the species 2 values sent to AcuSolve are
computed.

user equation Species 2 values are computed in a user equation.

component Species 2 values are set equal to a particle component.

species_2_user_equation (string) [No default]
When species_2_type equals flux and species_2_flux_type equals user_equation or
species_2_type equals value and species_2_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 2 values sent to AcuSolve.

species_2_user_index (integer) >=0 [=0]
When species_2_type equals flux and species_2_flux_type equals user_equation or
species_2_type equals value and species_2_value_type equals user_equation, specifies which

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.21

term in the user equation source term is used. species_2_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_2_component_index (integer) >=0 [=0]
When species_2_type equals value and species_2_value_type equals component, specifies
which particle component is used. species_2_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_2_scaling_factor (real) [=1.0]
When species_2_type equals value, the species 2 values sent to AcuSolve are multiplied by this
value before they are sent.

species_3_type (enumerated) [=none]
Type of species 3 coupling to AcuSolve. Specifies what type of species 3 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 3 source terms are sent to AcuSolve.

value Species 3 values are sent to AcuSolve.

species_3_flux_type (enumerated) [=user_equation]
When species_3_type equals flux, specifies how the species 3 source terms sent to AcuSolve are
computed.

user_equation Species 3 source terms are computed in a user equation

species_3_value_type (enumerated) [=component]
When species_3_type equals value, specifies how the species 3 values sent to AcuSolve are
computed.

user_equation Species 3 values are computed in a user equation.

component Species 3 values are set equal to a particle component.

species_3_user_equation (string) [No default]
When species_3_type equals flux and species_3_flux_type equals user_equation or
species_3_type equals value and species_3_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 3 values sent to AcuSolve.

species_3_user_index (integer) >=0 [=0]
When species_3_type equals flux and species_3_flux_type equals user_equation or
species_3_type equals value and species_3_value_type equals user_equation, specifies which
term in the user equation source term is used. species_3_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_3_component_index (integer) >=0 [=0]
When species_3_type equals value and species_3_value_type equals component, specifies
which particle component is used. species_3_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_3_scaling_factor (real) [=1.0]
When species_3_type equals value, the species 3 values sent to AcuSolve are multiplied by this
value before they are sent.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.22

species_4_type (enumerated) [=none]
Type of species 4 coupling to AcuSolve. Specifies what type of species 4 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 4 source terms are sent to AcuSolve.

value Species 4 values are sent to AcuSolve.

species_4_flux_type (enumerated) [=user_equation]
When species_4_type equals flux, specifies how the species 4 source terms sent to AcuSolve are
computed.

user_equation
Species 4 source terms are computed in a user equation.

species_4_value_type (enumerated) [=user_equation]
When species_4_type equals value, specifies how the species 4 values sent to AcuSolve are
computed.

user_equation Species 4 values are computed in a user equation.

component Species 4 values are set equal to a particle component.

species_4_user_equation (string) [No default]
When species_4_type equals flux and species_4_flux_type equals user_equation or
species_4_type equals value and species_4_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 4 values sent to AcuSolve.

species_4_user_index (integer) >=0 [=0]
When species_4_type equals flux and species_4_flux_type equals user_equation or
species_4_type equals value and species_4_value_type equals user_equation, specifies which
term in the user equation source term is used. species_4_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_4_component_index (integer) >=0 [=0]
When species_4_type equals value and species_4_value_type equals component, specifies
which particle component is used. species_4_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_4_scaling_factor (real) [=1.0]
When species_4_type equals value, the species 4 values sent to AcuSolve are multiplied by this
value before they are sent.

species_5_type (enumerated) [=none]
Type of species 5 coupling to AcuSolve. Specifies what type of species 5 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 5 source terms are sent to AcuSolve.

value Species 5 values are sent to AcuSolve.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.23

species_5_flux_type (enumerated) [=user_equation]
When species_5_type equals flux, specifies how the species 5 source terms sent to AcuSolve are
computed.

user_equation Species 5 source terms are computed in a user equation.

species_5_value_type (enumerated) [=component]
When species_5_type equals value, specifies how the species 5 values sent to AcuSolve are
computed.

user_equation Species 5 values are computed in a user equation.

component Species 5 values are set equal to a particle component.

species_5_user_equation (string) [No default])
When species_5_type equals flux and species_5_flux_type equals user_equation or
species_5_type equals value and species_5_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 5 values sent to AcuSolve.

species_5_user_index (integer) >=0 [=0]
When species_5_type equals flux and species_5_flux_type equals user_equation or
species_5_type equals value and species_5_value_type equals user_equation, specifies which
term in the user equation source term is used. species_5_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_5_component_index (integer) >=0 [=0)]
When species_5_type equals value and species_5_value_type equals component, specifies
which particle component is used. species_5_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_5_scaling_factor (real) [=1.0]
When species_5_type equals value, the species 5 values sent to AcuSolve are multiplied by this
value before they are sent.

species_6_type (enumerated) [=none]
Type of species 6 coupling to AcuSolve. Specifies what type of species 6 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 6 source terms are sent to AcuSolve.

value Species 6 values are sent to AcuSolve.

species_6_flux_type (enumerated) [=user_equation]
When species_6_type equals flux, specifies how the species 6 source terms sent to AcuSolve are
computed.

user_equation Species 6 source terms are computed in a user equation.

species_6_value_type (enumerated) [=component]
When species_6_type equals value, specifies how the species 6 values sent to AcuSolve are
computed.

user_equation Species 6 values are computed in a user equation.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.24

component Species 6 values are set equal to a particle component.

species_6_user_equation (string) [No default]
When species_6_type equals flux and species_6_flux_type equals user_equation or
species_6_type equals value and species_6_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 6 values sent to AcuSolve.

species_6_user_index (integer) >=0 [=0)]
When species_6_type equals flux and species_6_flux_type equals user_equation or
species_6_type equals value and species_6_value_type equals user_equation, specifies which
term in the user equation source term is used. species_6_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_6_component_index (integer) >=0 [=0]
When species_6_type equals value and species_6_value_type equals component, specifies
which particle component is used. species_6_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_6_scaling_factor (real) [=1.0]
When species_6_type equals value, the species 6 values sent to AcuSolve are multiplied by this
value before they are sent.

species_7_type (enumerated) [=none]
Type of species 7 coupling to AcuSolve. Specifies what type of species 7 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 7 source terms are sent to AcuSolve.

value Species 7 values are sent to AcuSolve.

species_7_flux_type (enumerated) [=user_equation]
When species_7_type equals flux, specifies how the species 7 source terms sent to AcuSolve are
computed.

user_equation Species 7 source terms are computed in a user equation.

species_7_value_type (enumerated) [=component]
When species_7_type equals value, specifies how the species 7 values sent to AcuSolve are
computed.

user_equation Species 7 values are computed in a user equation.

component Species 7 values are set equal to a particle component.

species_7_user_equation (string) [No default]
When species_7_type equals flux and species_7_flux_type equals user_equation or
species_7_type equals value and species_7_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 7 values sent to AcuSolve.

species_7_user_index (integer) >=0 [=0]
When species_7_type equals flux and species_7_flux_type equals user_equation or
species_7_type equals value and species_7_value_type equals user_equation, specifies which

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.25

term in the user equation source term is used. species_7_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_7_component_index (integer) >=0 [=0]
When species_7_type equals value and species_7_value_type equals component, specifies
which particle component is used. species_7_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_7_scaling_factor (real) [=1.0]
When species_7_type equals value, the species 7 values sent to AcuSolve are multiplied by this
value before they are sent.

species_8_type (enumerated) [=none]
Type of species 8 coupling to AcuSolve. Specifies what type of species 8 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 8 source terms are sent to AcuSolve.

value Species 8 values are sent to AcuSolve.

species_8_flux_type (enumerated) [=component]
When species_8_type equals flux, specifies how the species 8 source terms sent to AcuSolve are
computed.

user_equation Species 8 source terms are computed in a user equation.

species_8_value_type (enumerated) [=user_equation]
When species_8_type equals value, specifies how the species 8 values sent to AcuSolve are
computed.

user_equation Species 8 values are computed in a user equation.

component Species 8 values are set equal to a particle component.

species_8_user_equation (string) [No default]
When species_8_type equals flux and species_8_flux_type equals user_equation or
species_8_type equals value and species_8_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 8 values sent to AcuSolve.

species_8_user_index (integer) >=0 [=0]
When species_8_type equals flux and species_8_flux_type equals user_equation or
species_8_type equals value and species_8_value_type equals user_equation, specifies which
term in the user equation source term is used. species_8_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_8_component_index (integer) >=0 [=0]
When species_8_type equals value and species_8_value_type equals component, specifies
which particle component is used. species_8_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_8_scaling_factor (real) [=1.0]
When species_8_type equals value, the species 8 values sent to AcuSolve are multiplied by this
value before they are sent.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.26

species_9_type (enumerated) [=none]
Type of species 9 coupling to AcuSolve. Specifies what type of species 9 data is sent to AcuSolve.

none No coupling (no data sent).

flux Species 9 source terms are sent to AcuSolve.

value Species 9 values are sent to AcuSolve.

species_9_flux_type (enumerated) [=user_equation]
When species_9_type equals flux, specifies how the species 9 source terms sent to AcuSolve are
computed.

user_equation Species 9 source terms are computed in a user equation.

species_9_value_type (enumerated) [=component]
When species_9_type equals value, specifies how the species 9 values sent to AcuSolve are
computed.

user_equation Species 9 values are computed in a user equation.

component Species 9 values are set to a particle component.

species_9_user_equation (string) [No default]
When species_9_type equals flux and species_9_flux_type equals user_equation or
species_9_type equals value and species_9_value_type equals user_equation, specifies which
AcuTrace user equation provides the species 9 values sent to AcuSolve.

species_9_user_index (integer) >=0 [=0]
When species_9_type equals flux and species_9_flux_type equals user_equation or
species_9_type equals value and species_9_value_type equals user_equation, specifies which
term in the user equation source term is used. species_9_user_index is 0 based. It must be
greater than or equal to 0 and strictly less than the number of variables in the user equation.

species_9_component_index (integer) >=0 [=0]
When species_9_type equals value and species_9_value_type equals component, specifies
which particle component is used. species_9_component_index is 0 based. It must be greater
than or equal to 0 and strictly less than the number of particle components.

species_9_scaling_factor (real) [=1.0]
When species_9_type equals value, the species 9 values sent to AcuSolve are multiplied by this
value before they are sent.

Description
When the flow_field_type parameter in the FLOW_FIELD command is two_way_coupling, particle
source terms and values are sent from AcuTrace to a concurrently running AcuSolve simulation. The
source terms and values sent as well as how AcuSolve uses them are specified in the COUPLING_FIELDS
command.

The set up for a coupled particle-flow problem with AcuSolve and AcuTrace also requires several general
inputs in the AcuSolve input file regardless of the details of the coupling:

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.27

• Particle trace must be enabled:

EQUATION {
 ...
 particle_trace = on
 ...
}

• The host on which AcuTrace runs must be specified in the PARTICLE_TRACE command:

PARTICLE_TRACE{
 ...
 socket_host = "avocet"
 ...
}

In this example, AcuTrace runs on a host named avocet.

• Either AUTO_SOLUTION_STRATEGY must be used:

AUTO_SOLUTION_STRATEGY {
 ...
}

or a stagger for the particle trace must be defined and included as part of the TIME_SEQUENCE
command:

TIME_SEQUENCE {
 ...
 staggers = { "flow",
 "particle_trace" }
 ...
}
STAGGER("particle_trace") {
 equation = particle_trace
}

Two examples now follow. The first example illustrates flux, that is, source term, coupling. In this
example, particles exchange energy via conductive heat transfer. The COUPLING_FIELDS command

COUPLING_FIELDS {
 temperature_type = flux
 temperature_flux_type = user_equation
 temperature_user_equation = energy
}

specifies that the AcuTrace user equation energy provides a source term to the AcuSolve temperature
equation.

The user equation energy must be used in an active AcuTrace stagger for the coupling to have effect.
For example,

USER_EQUATION("energy") {
 user_function = "usrEnergy"
 num_variables = 1
}
EQUATION {
 ...
 user_equations = {energy}

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.28

 ...
}
STAGGER(energy) {
 equation = user_equation
 user_equation = "energy"
}
TIME_SEQUENCE {
 ...
 staggers = {particle,energy}
 ...
}

The C AcuTrace user function usrEnergy could be written as follows:

Void usrEnergy (
 UfpHd ufpHd,
 Real* outVec
 Integer nItems,
 Integer vecDim
)
{
 ...
 outVec[0] = cond / (m_p * cp_p) * e_particle[0] –
 cond * t_fluid[0] ;
 ...
}

outVec[0] contains the source term for the particle energy; the source term provided to AcuSolve is
this same value times -1.

See the AcuTrace User-Defined Function Reference Manual for more details on writing and using
AcuTrace user-defined functions.

Another requirement in this example for the coupling to have effect is that the AcuSolve input file
should have the temperature equation defined:

EQUATION {
 ...
 temperature = advective_diffusive
 ...
}

and used in an active stagger, for example:

TIME_SEQUENCE {
 ...
 staggers = { "flow",
 "temp_part" }
 ...
}
STAGGER("temp_part") {
 ...
 equation = none
 staggers { "temperature",
 "particle_trace" }
 ...
}
STAGGER("temperature") {
 equation = temperature

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.29

}

Our second example illustrates using value coupling as an alternative to AcuSolve species transport. In
this example, particles are used to represent species 1 and, therefore, AcuTrace is effectively evolving
species 1.

The number of particle components is set to 1 in the equation command:

EQUATION {
 ...
 number particle components = 1
 ...
}

The COUPLING_FIELDS command

COUPLING_FIELDS {
 ...
 species_1_type = value
 species_1_value_type = component
 ...
}

specifies that the value of the particle component couples to AcuSolve species 1. In other words, the
particle component will be averaged over all the particles onto the AcuSolve mesh to provide AcuSolve
with values of species 1. The components of the particles can be initialized as follows in the trace input
file:

PARTICLE_SEED("honey") {
 ...
 component_type = constant
 constant_components = { 1.0 }
 ...
}
PARTICLE_SEED("tea") {
 ...
 component_type = constant
 constant_components = { 0.0 }
 ...
}

The component for the particles in seed group "honey" is set to 1, in other words, species 1 will equal
1 in regions containing these particles alone. Similarly, species 1 will equal 0 in regions containing
particles from the second seed group alone.

In the AcuSolve input file, the EQUATION command specifies that there is a single species,

EQUATION {
 ...
 species_transport = advective_diffusive
 num_species = 1
 ...
}

but that a particle trace stagger is to be used instead of a species stagger:

TIME_SEQUENCE {
 ...

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.30

 staggers = { "flow",
 "particle_trace" }
 ...
}

The parameter coupling_iterations specifies the number of AcuTrace iterations per AcuSolve
time step. A single AcuTrace iteration advances all the particles from the beginning to the end of the
AcuSolve time step. Ideally, the value of coupling_iterations should equal to the number of times
the particle trace stagger is invoked during an AcuSolve time step.

For example, suppose the AcuSolve inputs include following time sequence and stagger parameters:

TIME_SEQUENCE {
 ...
 staggers = { "flow",
 "temp_part" }
 ...
}
STAGGER("temp_part") {
 equation = none
 min_stagger_iterations = 3
 max_stagger_iterations = 3
 staggers = { "temperature",
 "particle_trace" }
}
STAGGER("particle_trace") {
 equation = particle_trace
}

Here AcuSolve will invoke the particle trace stagger three times per AcuSolve time step; therefore, the
value of coupling_iterations should be three. If the value of coupling_iterations is smaller than
three, the two and three invocations of the particle trace stagger will have no effect on the AcuSolve
solution. A value of coupling_iterations greater than three is effectively ignored since AcuSolve will
invoke AcuTrace exactly three times.

If the AUTO_SOLUTION_STRATEGY is used by AcuSolve, AcuSolve will invoke AcuTrace only once, so the
value of coupling_iterations is effectively one.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.31

FINITE_MASS
Specifies the finite mass model parameters.

Type
AcuTrace Command

Syntax
FINITE_MASS {parameters}

Qualifier
This command has no qualifier.

Parameters
drag_law_type or drag_law (enumerated)[=standard]

Type of drag law.

zero or none No drag force.

simple_stokes_law or simple Simple Stokes law.

stokes_law or stokes Stokes law.

standard_drag_law or
standard

Standard drag law.

drag_coefficient_model or cd_model (enumerated)[=standard]
Type of drag coefficient model. Used only when drag_law_type is standard.

constant Constant drag coefficient.

standard Standard drag coefficient model.

drag_coefficient or cd (real) [=0.0]
Drag coefficient. Used only when drag_law_type is standard and drag_coefficient_model is
constant or when drag_law_type is simple.

faxen_drag_force or faxen_drag (boolean) [=on]
Flag specifying if Faxen force is used. Used only when drag_law_type is standard or stokes.

viscosity_model or mu_model (enumerated) [=flow]
Flag specifying how to obtain the values of material viscosity used to compute the Reynolds
number. Used only when drag_law_type is standard.

use_flow_values or flow Obtain the values from the AcuSolve database.

constant Use a constant value.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.32

constant_viscosity or mu (real) [=0.0]
Material viscosity used in calculations of the Reynolds number. Used only when drag_law_type is
standard and viscosity_model is constant.

density_model or rho_model (enumerated)[=flow]
Flag specifying how to obtain the values of fluid density used in force calculations.

use_flow_values or flow Obtain the values from the AcuSolve database.

constant Use a constant value.

constant_density or rho_fluid (real) [=0.0]
Fluid density used in force calculations. Used only when density_model is constant.

pressure_force or pressure (boolean) [=on]
Flag specifying if pressure force is used.

tau_force or tau (boolean) [=on]
Flag specifying if viscous stress force is used.

virtual_mass_force or virtual_mass (boolean) [=on]
Flag specifying if virtual mass force is used.

faxen_virtual_mass_force or faxen_virtual_mass (boolean) [=on]
Flag specifying if Faxen virtual mass force is used. Used only when faxen_drag is on.

constant_gravity or gravity (array) [={0,0,0}]
Acceleration due to gravity. This value should equal what is used in AcuSolve.

centrifugal (boolean) [=on]
Flag specifying if the centrifugal acceleration is included in rotating reference frames. This value
should equal what is used in AcuSolve.

coriolis (boolean) [=on]
Flag specifying if the coriolis acceleration is included in rotating reference frames. This value
should equal what is used in AcuSolve.

angular_acceleration or angular_acc (boolean) [=on]
Flag specifying if the angular acceleration is included in rotating reference frames. This value
should equal what is used in AcuSolve.

wall_type or type (enumerated) [=reflect]
Wall type. Applies only to particle surfaces of type wall, slip, or symmetry not specified in a
FINITE_MASS_BOUNDARY_CONDITION command.

reflect Particles reflect at surface.

stop or trap Particles stop at surface but remain active.

terminate or escape Particles stop at surface and become inactive.

wall_en_type or en_type (enumerated) [=constant]
Type of normal coefficient of restitution. Applies only to particle surfaces of type wall, slip, or
symmetry not specified in a FINITE_MASS_BOUNDARY_CONDITION command and only if wall_type
is reflect.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.33

constant Coefficient is constant.

piecewise_linear or linear Coefficient is a piecewise linear function of the normal
component of the impact velocity.

cubic_spline or spline Coefficient is a cubic spline function of the normal component
of the impact velocity.

constant_wall_en or wall_en [=1.0]
Normal coefficient of restitution. Applies only to particle surfaces of type wall, slip, or symmetry
not specified in a FINITE_MASS_BOUNDARY_CONDITION command and only if wall_type is reflect
and wall_en_type is constant.

wall_en_curve_fit_values or en_values [no default]
A two-column array of normal-velocity/normal-coefficient-of-restitution data values. Used when
wall_en_type is piecewise_linear or cubic_spline. Applies only to particle surfaces of type wall,
slip, or symmetry not specified in a FINITE_MASS_BOUNDARY_CONDITION command and only if
wall_type is reflect.

wall_et_type or et_type (enumerated) [=constant]
Type of tangential coefficient of restitution. Applies only to particle surfaces of type wall, slip, or
symmetry not specified in a FINITE_MASS_BOUNDARY_CONDITION command and only if wall_type
is reflect.

constant Coefficient is constant.

piecewise_linear or linear Coefficient is a piecewise linear function of the normal
component of the impact velocity.

cubic_spline or spline Coefficient is a cubic spline function of the normal component
of the impact velocity.

constant_wall_et or wall_et [=1.0]
Tangential coefficient of restitution. Applies only to particle surfaces of type wall, slip, or
symmetry not specified in a FINITE_MASS_BOUNDARY_CONDITION command and only if wall_type
is reflect and wall_en_type is constant.

wall_et_curve_fit_values or et_values [no default]
A two-column array of normal-velocity/tangential-coefficient-of-restitution data values. Used
when wall_et_type is piecewise_linear or cubic_spline. Applies only to particle surfaces of type
wall, slip, or symmetry not specified in a FINITE_MASS_BOUNDARY_CONDITION command and only
if wall_type is reflect.

Description
The FINITE_MASS command specifies the forces acting on the particles and the default particle/wall
interaction.

The forces acting on a particle in AcuTrace are

(6)

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.34

where is the drag force, the pressure force, the viscous stress force, the virtual mass

force, and the gravity force. (The Basset force and other forces such as the Saffman lift force
are not currently accounted for.) The parameters drag_law_type, pressure_force, tau_force,
virtual_mass_force, and constant_gravity determine which of these are active; by default, all
forces are active.

Note: The default value of constant_gravity is the zero vector; this should be set to the
same value used in the AcuSolve run providing the flow data for the trace.

The drag and the virtual mass forces can include Faxen correction terms accounting for nonuniformity
effects. The inclusion of these terms is controlled by the parameters faxen_drag_force and
faxen_virtual_mass. These terms are included by default. Generally, none of the force-related
parameters need to be modified with the exception of constant_gravity.

By default (drag_law_type is standard and drag_coefficient_model is standard) the drag force

(without the Faxen correction) is where is the density of the fluid and

 the diameter of the particle. The value of the coefficient of drag, depends on the relative Reynolds

number, where is the material viscosity of the fluid:

(7)

When drag_law_type is standard and drag_coefficient_model is constant, is equal to the
value of drag_coefficient regardless of the value of Re. When drag_law_type is stokes_law,

 (i.e.) regardless of the value of Re. When drag_law_type is

simple_stokes, where is equal to the value of drag_coefficient. When

drag_law_type is zero, is the zero vector.

The other forces are

(8)

where is the volume of the particle the fluid pressure, the viscous stress tensor of the fluid,

and the material derivative of the fluid velocity. is given by the value of constant_gravity.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.35

If pressure_force, tau_force, or virtual_mass_force are off, , , or respectively, are set
to 0. Similarly, if faxen_drag_force or faxen_virtual_mass_force are off, the corresponding Faxen
correction is set to 0.

The calculation of the drag and the virtual mass forces requires values for the fluid density and, in
the case of drag, material viscosity. It is highly recommended that these values be obtained from the
AcuSolve database, for example,

density_model = use_flow_values
viscosity_model = use_flow_values

However, these values are in the AcuSolve database only if derived quantity output is
enabled in AcuSolve. This output is enabled only if the output_frequency parameter in the
DERIVED_QUANTITY_OUTPUT command has a non-zero value, for example,

DERIVED_QUANTITY_OUTPUT {
...
 output_frequency = 1000
...
}

Moreover, if density_model = use_flow_values or viscosity_model = use_flow_values,
AcuTrace requires that the output_frequency parameters in the AcuSolve NODAL_OUTPUT and
DERIVED_QUANTITY_OUTPUT commands have the same value, for example,

DERIVED_NODAL_OUTPUT {
...
 output_frequency = 1000
...
}
DERIVED_QUANTITY_OUTPUT {
...
 output_frequency = 1000
...
}

If AcuTrace is run with density_model or viscosity_model equal to use_flow_values and derived
quantity output was not enabled in the AcuSolve run, AcuTrace will print an error message and stop.
AcuTrace will also stop if density_model or viscosity_model equals use_flow_values and there is a
mismatch in the values of output_frequency in AcuSolve. In either of these cases, the two options are
either to rerun AcuSolve with the proper inputs or to use

density_model = constant
viscosity_model = constant

and suitable values of constant_density and constant_viscosity.

The default particle-wall boundary conditions and interaction parameters are also set by the
FINITE_MASS command. Only the interactions at surfaces of type wall, slip, or symmetry are
affected by the FINITE_MASS command. Moreover, the settings for a specific surface can be set in
a FINITE_MASS_BOUNDARY_CONDITION command, in which case all the settings in the FINITE_MASS
command, including default vales, are ignored for that surface.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.36

AcuTrace allows three different types of interaction when a particle hits a wall (here "wall" refers to a
surface of type wall, slip, or symmetry):

• the particle reflects off the wall (wall_type = reflect)

• the particle stops but continues to be actively involved in the particle trace (wall_type = stop)

• the particle trace terminates (wall_type = terminate)

When a particle reflects off a wall, the normal and tangential components of its velocity and (in
the wall frame of reference) are given by

(9)

where and are the normal and tangential coefficients of restitution, and and are the
incident values of the normal and tangential components of the particle velocity. and always lie
between 0 and 1.

Each coefficient can be specified as a constant, a piecewise linear function of the magnitude of the
incident normal velocity, or a cubic spline function of the magnitude of the incident normal velocity.

Note: AcuTrace clips the values of the coefficients so that they lie between 0 and 1.

In the first example below, the normal and tangential coefficients of restitution have constant values of
1.0:

wall_en_type = constant
wall_et_type = constant
wall_en = 1.0
wall_et = 1.0

In the next example, the normal and tangential coefficients of restitution have values of .1, .5, and .9
for incident normal velocity magnitudes of 1, 10, and 100, respectively. Linear interpolation is used for
velocity magnitudes between 1 and 100; constant extrapolation is used for magnitudes less than 1 or
greater than 100:

wall_en_type = piecewise_linear
wall_et_type = piecewise_linear
en_values = { 1.0, 0.1 ;
 10.0, 0.5 ;
 100.0, 1.0 }
et_values = { 1.0, 0.1 ;
 10.0, 0.5 ;
 100.0, 1.0 }

If instead

wall_en_type = cubic_spline
wall_et_type = cubic_spline

cubic spline interpolants are used for velocity magnitudes between 1 and 100.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.37

FINITE_MASS_BOUNDARY_CONDITION
Specifies the finite mass boundary conditions and interaction parameters for a particle surface.

Type
AcuTrace Command

Syntax
FINITE_MASS_BOUNDARY_CONDITION ("name") {parameters}

Qualifier
User-given name.

Parameters
particle_surface or surface (string) [no default]

Name of the particle surface.

wall_type or type (enumerated) [=reflect]
Wall type.

reflect Particles reflect at surface.

stop or trap Particles stop at surface but remain active.

terminate or escape Particles stop at surface and become inactive.

wall_en_type or en_type (enumerated) [=constant]
Type of normal coefficient of restitution. Applies only if wall_type is reflect.

constant Coefficient is constant.

piecewise_linear or linear Coefficient is a piecewise linear function of the normal
component of the impact velocity.

cubic_spline or spline Coefficient is a cubic spline function of the normal component
of the impact velocity.

constant_wall_en or wall_en [=1.0]
Normal coefficient of restitution. Applies only if wall_type is reflect and wall_en_type is
constant.

wall_en_curve_fit_values or en_values [no default]
A two-column array of normal-velocity/normal-coefficient-of-restitution data values. Used when
wall_en_type is piecewise_linear or cubic_spline. Applies only if wall_type is reflect.

wall_et_type or et_type (enumerated) [=constant]
Type of tangential coefficient of restitution. Applies only if wall_type is reflect.

constant Coefficient is constant.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.38

piecewise_linear or linear Coefficient is a piecewise linear function of the normal
component of the impact velocity.

cubic_spline or spline Coefficient is a cubic spline function of the normal component
of the impact velocity.

constant_wall_et or wall_et [=1.0]
Tangential coefficient of restitution. Applies only if wall_type is reflect and wall_en_type is
constant.

wall_et_curve_fit_values or et_values [no default]
A two-column array of normal-velocity/tangential-coefficient-of-restitution data values. Used
when wall_et_type is piecewise_linear or cubic_spline. Applies if wall_type is reflect.

Description
The FINITE_MASS_BOUNDARY_CONDITION command specifies the particle/wall interaction at a given
AcuSolve particle surface of type wall, slip, or symmetry. An AcuSolve particle surface is a surface that
is named either in a PARTICLE_SURFACE command or in a SIMPLE_BOUNDARY_CONDITION command.

For example, if either the command

PARTICLE_SURFACE("upper_wall") {
 type = wall
 ...
}

or the command

SIMPLE_BOUNDARY_CONDITION("upper_wall") {
 type = wall
 ...
}

appears in the AcuSolve input file for the AcuSolve run used by AcuTrace, upper_wall is an AcuSolve
particle surface of type wall and the command

FINITE_MASS_BOUNDARY_CONDITION("upper_wall") {
 particle_surface = "upper_wall"
 ...
}

specifies the particle/wall boundary condition and interaction parameters at particle surface
upper_wall. Moreover, the wall interaction parameters set in the FINITE_MASS command (wall_type,
wall_en_type, constant_wall_en, wall_en_curve_fit_values, wall_et_type, constant_wall_et,
and wall_et_curve_fit_values) are ignored for upper_wall. Only the parameters in the
FINITE_MASS_BOUNDARY_CONDITION command, including any default parameter values, apply to particle
surface upper_wall.

Note: In this example any unique name can be used in the
FINITE_MASS_BOUNDARY_CONDITION command, not just upper_wall; for example,

FINITE_MASS_BOUNDARY_CONDITION("finite mass upper wall parameters") {

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.39

 particle_surface = upper_wall
 ...
}

AcuTrace allows three different types of interaction when a particle hits a wall (here "wall" refers to a
surface of type wall, slip, or symmetry):

• the particle reflects off the wall (wall_type = reflect)

• the particle stops but continues to be actively involved in the particle trace (wall_type = stop)

• the particle trace terminates (wall_type = terminate)

When a particle reflects off a wall, the normal and tangential components of its velocity, and (in
the wall frame of reference) are given by

(10)

where and are the normal and tangential coefficients of restitution, and and are the
incident values of the normal and tangential components of the particle velocity. and always lie
between 0 and 1.

Each coefficient can be specified as a constant, a piecewise linear function of the magnitude of the
incident normal velocity, or a cubic spline function of the magnitude of the incident normal velocity.

Note: AcuTrace clips the values of the coefficients so that they lie between 0 and 1.

In the first example below, the normal and tangential coefficients of restitution have constant values of
1.0:

wall_en_type = constant
wall_et_type = constant
wall_en = 1.0
wall_et = 1.0

In the next example, the normal and tangential coefficients of restitution have values of .1, .5, and .9
for incident normal velocity magnitudes of 1, 10, and 100, respectively. Linear interpolation is used for
velocity magnitudes between 1 and 100; constant extrapolation is used for magnitudes less than 1 or
greater than 100:

wall_en_type = piecewise_linear
wall_et_type = piecewise_linear
en_values = { 1.0, 0.1 ;
 10.0, 0.5 ;
 100.0, 1.0 }
et_values = { 1.0, 0.1 ;
 10.0, 0.5 ;
 100.0, 1.0 }

If instead

wall_en_type = cubic_spline
wall_et_type = cubic_spline

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Global Commands p.40

cubic spline interpolants are used for velocity magnitudes between 1 and 100.

Proprietary Information of Altair Engineering

Solution Strategy Commands 3

Solution Strategy Commands

The solution strategy of a problem is specified by the commands in this chapter.

This chapter covers the following:

• AUTO_SOLUTION_STRATEGY (p. 42)

• TIME_SEQUENCE (p. 44)

• STAGGER (p. 48)

• TRACE_PARAMETERS (p. 51)

Either use the AUTO_SOLUTION_STRATEGY command, which issues all the other commands in this
chapter, or use those commands individually. If the AUTO_SOLUTION_STRATEGY command is not used,
then the TIME_SEQUENCE and STAGGER commands must be explicitly given in a trace input file. All others
are optional; if they are not given, their default values are used.

Altair® AcuSolve® 2025
Solution Strategy Commands p.42

AUTO_SOLUTION_STRATEGY
Automatically creates a solution strategy by issuing all the other commands in this chapter.

Type
AcuTrace Command

Syntax
AUTO_SOLUTION_STRATEGY {parameters}

Qualifier
This command has no qualifier.

Parameters
max_time (real) >=0 [=0]

Final time of the particle trace. The trace of an individual particle will terminate when its trace
time reaches this value. The trace may terminate earlier due to other criteria. If zero, this option
is ignored.

max_segments (integer) >=0 [= 100000]
Maximum number of segments in the trace of any one particle. The trace of an individual particle
will terminate when the number of segments in its trace reaches this value. The trace may
terminate earlier due to other criteria. If zero, this option is ignored.

Description
The goal of the AUTO_SOLUTION_STRATEGY command is to completely automate the specification of all
the solution strategy commands based on the physical specification of the problem. This is not entirely
possible currently but for most problems it is. AUTO_SOLUTION_STRATEGY is a functional command,
hence it is processed immediately upon being read from the input file. As such its position in the
input file may be very important. When AUTO_SOLUTION_STRATEGY is issued, the parameters of the
previously-given EQUATION command are used to determine what equations are being solved. Then the
appropriate TIME_SEQUENCE and STAGGER commands are issued. These commands are also saved in a
file called problem.pa.inc, where problem is specified by theproblem parameter in the FLOW_FIELD
command. The parameters from these commands may be overwritten afterwards by manually issuing
the commands. On the next run, problem.pa.inc may be included (modified or not) instead of
AUTO_SOLUTION_STRATEGY.

For example, the simplest form of this command for particle tracing without stretch is

EQUATION {
 particle = massless
}
AUTO_SOLUTION_STRATEGY {
}

For particle tracing with stretch the command is

EQUATION {

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.43

 particle = massless
 stretch = standard
}
AUTO_SOLUTION_STRATEGY {
}

For particle tracing with stretch and user equations ener and temp the command is

EQUATION {
 particle = massless
 stretch = standard
 user_equations = {ener, temp}
}
AUTO_SOLUTION_STRATEGY {
}

One can discover the stagger names used in the staggers parameter of the TIME_SEQUENCE command
by examining the problem.pa.inc file.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.44

TIME_SEQUENCE
Specifies the time stepping and staggering strategy.

Type
AcuTrace Command

Syntax
TIME_SEQUENCE {parameters}

Qualifier
This command has no qualifier.

Parameters
max_time (real) >=0 [=0]

Final time of the particle trace. The trace of an individual particle will terminate when its trace
time reaches this value. The trace may terminate earlier due to other criteria. If zero, this option
is ignored.

max_segments (integer) >=0 [=10000]
Maximum number of segments in the trace of any one particle. The trace of an individual particle
will terminate when the number of segments in its trace reaches this value. The trace may
terminate earlier due to other criteria. If 0, this option is ignored.

min_stagger_iterations or min_stg_iters (integer) >=0 [=1]
Minimum number of stagger iterations before advancing to the next time step. If zero, this option
is ignored.

max_stagger_iterations or max_stg_iters (integer) >=0 [=1]
Maximum number of stagger iterations before advancing to the next time step.

lhs_update_initial_times or lhs_init_steps (integer) >=0 [=1]
The number of initial time steps in which the left-hand-side (LHS) matrices of all staggers are
discarded at the start of every time step.

lhs_update_frequency or lhs_freq (integer) >=0 [=1]
The time step frequency at which the left-hand-side (LHS) matrices of all staggers are discarded
at the start of such time steps. If zero, this option is ignored.

stagger_convergence_tolerance or stg_conv_tol (real) >=0 [=1.e-4]
Time step convergence tolerance. The stagger iteration is terminated when all convergence
measures within the stagger iteration are less than this convergence tolerance and at least
min_stagger_iterations have been solved.

stagger_lhs_update_frequency or stg_lhs_freq (integer) >=0 [=0]
The stagger iteration frequency at which the left-hand-side (LHS) matrices of all staggers are
discarded at the start of such staggers. If zero, this option is ignored.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.45

staggers or stgs list [no default]
List of staggers to be executed. Staggers are solved in the specified sequence.

Description
This command specifies the time stepping and stagger iteration strategy and parameters.

A time marching method is used to advance the particle trace of each individual particle. Staggers
are used to solve for a subset of the equations present in the problem; a stagger for the particle
equation must always be present. With exception of a stagger for stretch equal standard, within each
stagger, the residual and the left-hand-side (LHS) matrix of the specified equation system is formed,
the resulting linear equation system is solved and the solution is updated (corrected); the standard
stretch equation is solved by a direct, non-iterative method. These steps define a set of nested loops
which are used to advance the solution. A pseudo code of the time stepping strategy is shown below:

Loop over time steps
 Loop over staggers
 Stagger 1:
 Loop over nonlinear iterations
 Form stagger residual and if needed LHS matrix
 Solve linear equation system
 Update stagger solution field(s)
 Check nonlinear convergence
 End nonlinear loop
 ...
 Stagger N:
 Loop over nonlinear iterations
 Form stagger residual and if needed LHS matrix
 Solve linear equation system
 Update stagger solution field(s)
 Check nonlinear convergence
 End nonlinear loop
 Check stagger convergence
 End stagger loop
 Check time step convergence
 Optionally compute and output results
 Determine time increment of the next time step
End time step loop

The loops over the time steps and staggers and the sequence of staggers are controlled by the
TIME_SEQUENCE command. The loop over each stagger's nonlinear iterations, formations, and solution
of stagger equations is controlled by the STAGGER command. The selection of the time increments is
controlled by the TRACE_PARAMETERS command.

The loop over the time steps terminates when one of the following occurs:

• User signals termination

• A fatal error occurs

• All particles have become "inactive", for example, they have:

◦ reached either a trace time equal to max_time or a segment count equal to max_segments, or

◦ have reached a trace time equal to the maximum value of all time cuts when time cut output is
the only output requested, or

◦ left the flow domain through an outflow surface, or

◦ stopped at a solid boundary of the flow domain, or

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.46

◦ stopped at a sliding interface of the flow domain

Particles for which none of the above hold are said to be "active".

The loop over the staggers terminates when one of the following occurs:

• max_stagger_iterations stagger iterations are performed.

• at least min_stagger_iterations stagger iterations are performed and the last set of convergence
measures fall below stagger_convergence_tolerance.

The staggers parameter defines the list of staggers to be solved. For example, to solve for particle
position, stretch, and a user equation ener, one may specify:

TIME_SEQUENCE {
 staggers = { "particle", "stretch", "ener" }
}
STAGGER("particle") {
 equation = particle
...
}
STAGGER("stretch") {
 equation = stretch
...
}
STAGGER("enth") {
 equation = user_equation
 user_equation = "ener"
...
}

Here the particle stagger is solved first for the particle equations, then the stretch stagger is solved
for the stretch equation and then the ener stagger is solved for the user-defined energy equation.
AcuTrace computes particle traces as a series of segments using fifth-order time-discontinuous Galerkin
(TDG) with error control. Given a segment start point, a stagger for equation = particle computes the
endpoint of a single segment of the trace of a single particle.

A stagger may be repeated multiple times. For example,

TIME_SEQUENCE {
 staggers = { "ener", "particle", "ener", "stretch" }
 ...
}

solves the ener stagger before and after the particle stagger.

The only parameters that currently affect the solution are max_time, max_segments, and staggers. The
other parameters are reserved for future use. Currently, changing the values of the other parameters
will not change the solution obtained.

There is currently no feedback between the particle and the stretch equations, nor from the user
equations to either the particle or stretch equations. Generally, if there are N user equations, eqn1, ...
eqnN, and these equations are not coupled, the time sequence and accompanied staggers can simply
be:

TIME_SEQUENCE {
 staggers = { "particle", "stretch", "eqn1", ..., "eqnN" }
 }

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.47

STAGGER("particle") {
 equation = particle
...
 }
STAGGER("stretch") {
 equation = stretch
...
 }
STAGGER("eqn1") {
 equation = user_equation
 user_equation = "eqn1"
...
 }
...
STAGGER("eqnN") {
 equation = user_equation
 user_equation = "eqnN"
 ...
}

If two or more user equations are coupled, it is best to have a single stagger for their coupled solution.
See the description of the STAGGER command.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.48

STAGGER
Specifies a stagger for the solution of an equation.

Type
AcuTrace Command

Syntax
STAGGER ("name") {parameters...}

Qualifier
User-given name.

Parameters
equation (enumerated) [=none]

Equation to be solved.

none No equation solved.

particle Particle motion equation.

stretch Stretch equation.

user_equation User-defined equation.

min_stagger_iterations or min_stg_iters (integer) >0 [=1]
Minimum number of nonlinear iterations for this stagger.

max_stagger_iterations or max_stg_iters (integer) >0 [=1]
Maximum number of nonlinear iterations for this stagger. If 0, this option is ignored.

convergence_tolerance or conv_tol (real) >0 [=1.e-6]
Convergence tolerance to end nonlinear iterations of this stagger.

lhs_update_frequency or lhs_freq (integer) >=0 [=1]
The nonlinear iteration frequency at which the left-hand-side (LHS) matrix of this stagger is
discarded. If zero, this option is ignored, that is, the LHS is not updated. Is this its own entry or a
subset of the one above?

Nonlinear (boolean) [=on]
Flag specifying whether or not to use the nonlinear solver. Ignored if equation is particle
(nonlinear is always on) or stretch (nonlinear is always off.)

user_equation (string) [no default]
User equation to use if equation is user_equation.

staggers (list) [={}]
List of sub-staggers to be executed. The sub-staggers (if any) are executed after the main
equation of the stagger is solved.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.49

Description
This command specifies the nonlinear iteration and linear solver parameters for the solution of an
equation. This command also accommodates execution of other staggers. For a detailed description of
time stepping and nonlinear solution strategy, see the TIME_SEQUENCE command.

In order for a stagger to be executed, it must be referenced directly or indirectly by the TIME_SEQUENCE
command. Direct reference is accomplished by adding the user-given name of the STAGGER command
to the list of staggers in the staggers parameter of the TIME_SEQUENCE command. For example, in the
following:

TIME_SEQUENCE {
 staggers = { "particle" }
}
STAGGER("particle") {
 equation = particle
}
STAGGER("stretch") {
 equation = stretch
}

The particle stagger is directly referenced, therefore its equation is solved. The stretch stagger is not
referenced, therefore its equation is not solved.

A stagger may also be indirectly referenced through another (referenced) stagger. For example,

TIME_SEQUENCE {
 staggers = { "particle", "reaction" }
}
STAGGER("reaction") {
 equation = none
 min_stagger_iterations = 2
 max_stagger_iterations = 2
 staggers = { "temperature", "composition" }
}
STAGGER("particle") {
 equation = particle
...
}
STAGGER("temperature") {
 equation = user_equation
 user_equation = temperature
...
}
STAGGER("composition") {
 equation = user_equation
 user_equation = composition
...
}

This option does provide a powerful mechanism for building a custom nonlinear solution strategy. It is
currently needed only for solving coupled user equations, as in the example just above, where the user
equations temperature and composition are coupled.

The equation of a referenced stagger must be set via the EQUATION command. On the other hand,
an equation set by the EQUATION command does not need to be referenced by any stagger. In
this case, the solution field(s) of such equations simply retain their initial values throughout the

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.50

analysis. The initial values come from either one or more PARTICLE_SEED commands or one or more
USER_EQUATION_INITIAL_CONDITION commands.

Generally speaking, each stagger loops over a number of nonlinear iterations, within which the residual
and optionally the LHS matrix of the stagger are formed, the resulting linear equation system is
solved, the corresponding solution field is updated and its sub-staggers are executed. Particle traces
are computed as a series of segments using fifth-order time-discontinuous Galerkin (TDG) with error
control. Given a segment start point, a particle stagger computes the endpoint of a single segment of
the trace of a single particle using a nonlinear iterative solver. A stretch stagger, on the other hand, is
always solved with a linear, non-iterative, direct update. User equation staggers can also be solved in
this manner if appropriate, although generally a nonlinear iterative solver is used.

For all nonlinear iterative solutions, a minimum of min_stagger_iterations and a maximum of
max_stagger_iterations nonlinear iterations are performed. If the convergence measures are less
than the convergence_tolerance and min_stagger_iterations iterations performed, the stagger loop
is done.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.51

TRACE_PARAMETERS
Specifies parameters controlling the computation of the particle path.

Type
AcuTrace Command

Syntax
TRACE_PARAMETERS {parameters}

Qualifier
This command has no qualifier.

Parameters
element_crossing or elem_cross (boolean) [=off]

Specifies whether or not a single particle trace segment can cross an element boundary.

max_segment_length or max_seglen (real) >= 0 [=0]
Maximum length of a segment. If 0, this value imposes no maximum.

max_segment_coordinate_increment or max_coord_inc (real) >=0 [=0.5]
Maximum local coordinate segment length allowed (segment length as a fraction of the size of the
element.) If 0, this value imposes no maximum.

max_segment_time_increment or max_dt (real) >=0 [=0.0]
Maximum time step per segment. If 0, this value imposes no maximum.

max_turning_angle or max_angle (real) >=0 [=15]
Maximum turn angle in degrees of the particle velocity from the previous segment. If 0, this value
imposes no maximum.

turbulence_trace or turb (boolean) [=off]
Specifies whether or not the particle integration accounts for the effects of turbulence.

Description
The TRACE_PARAMETERS command specifies parameters controlling the computation of the particle path.

Particle traces are computed by AcuTrace as a series of segments using fifth-order time-discontinuous
Galerkin (TDG) with error control. In the absence of any other restrictions, the end point of single
particle segment can be anywhere in the element containing the segment start point or anywhere
in any of the neighboring elements sharing a face with the element of origin. There are four such
neighbors for tetrahedral elements, five for pyramidal and wedge elements, and six for hexahedral
elements. This restriction in effect imposes a time increment restriction on the particle advance similar
to a CFL=1 condition on the flow solver. max_segment_time_increment is the maximum value this time
increment can have. The values of the max_segment_length, max_segment_coordinate_increment,
and max_turning_angle parameters further restrict the time increment of a single particle segment.

A value of off for element_crossing further restricts the time step by forcing the particle segment
endpoint to be in the element, or on the element face of the element, containing the segment starting

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Solution Strategy Commands p.52

point. The particle trace is computed more accurately if element_crossing is off, but the computation
time will be about 50 percent greater than if element_crossing is on.

If turbulence_trace equals on, the effect of turbulence is modeled by randomly perturbing the particle
velocity as a function of the local eddy viscosity. The result is a statistically correct lateral diffusion
of the particle paths from the path given by the unperturbed flow velocity field alone. This process is
repeatable, that is, successive runs of AcuTrace will yield the same trajectories.

Proprietary Information of Altair Engineering

Particle Data Commands 4

Particle Data Commands

The particle data commands are outlined in this chapter.

This chapter covers the following:

• PARTICLE_SEED (p. 54)

• USER_EQUATION_INITIAL_CONDITION (p. 67)

There needs to be at least one PARTICLE_SEED command. As many PARTICLE_SEED commands as
necessary are allowed. Each unique PARTICLE_SEED command defines a distinct set of particles. A
USER_EQUATION_INITIAL_CONDITION command is allowed only for pairings of particle seed groups and
user equations. Each of the pairings defined by the particle seed commands and the user equations
specified by the user_equations parameter in the EQUATION command requires a corresponding
USER_EQUATION_INITIAL_CONDITION command. If no equations are specified by the user_equations
parameter in the EQUATION command, no USER_EQUATION_INITIAL_CONDITION commands are needed.

Altair® AcuSolve® 2025
Particle Data Commands p.54

PARTICLE_SEED
Specifies the initial conditions for a set of particles.

Type
AcuTrace Command

Syntax
PARTICLE_SEED ("name") {parameters...}

Qualifier
User-given name.

Parameters
marker (integer) [=0]

A marker value assigned to all particles in this set.

seed_ids_type or id_type (enumerated) [=user]
Type of seed position specification.

user Use the seed ids provided by you if available, otherwise, use
global seed ids.

global Use global seed ids.

local Use local seed ids.

coordinates_type or crd_type (enumerated) [=per_seed]
Type of seed position specification.

per_seed or seeds Use a list of seed ids and positions (id, x, y, z).

volume_random or
vol_random

Seeds randomly distributed in an element set.

volume_uniform or
vol_uniform

Seeds uniformly distributed in an element set.

surface_random or
surf_random

Seeds randomly distributed on a surface.

surface_uniform or
surf_uniform

Seeds uniformly distributed on a surface.

surface_flux_weighted or
surf_flux_weighted

Seeds randomly distributed on a surface in a flux weighted
manner.

region_random or
reg_random

Seeds randomly distributed in a rectangular region.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.55

region_uniform or
reg_uniform

Seeds uniformly distributed in a rectangular region.

seed_coordinates or coord (array) [no default]
List of seed ids and positions. Each row contains an integer seed id followed by the three real
values, x,y,z, of the seed position. Used only if coordinates_type is per_seed.

number_of_seeds or num_seeds (integer) [=1]
Number of seeds. Ignored if coordinates_type is per_seed.

region_bounding_box or region (array) [={0,0,0;1,1,1}]
Lower and upper corners of the region. Used only if coordinates_type is region_random or
region_uniform.

particle_surface or surface (string) [no default]
Name of the particle surface. Used only if coordinates_type is surface_random, surface_uniform,
or surface_flux_weighted.

particle_surface_offset or surface_offset (real) [=0]
Offset of seed position from the particle surface as a fraction of the element length. Used only if
coordinates_type is surface_random, surface_uniform, or surface_flux_weighted.

element_set or elem_set (string) [no default]
Name of the element set. Used only if coordinates_type is volume_random or volume_uniform.

density_type (enumerated) [=constant]
Type of seed density specification.

constant All seeds assigned the same density.

per_seed Use a list of densities, one density per seed.

random Seed densities are randomly assigned.

seed_densities or densities (array) [no default]
List of seed densities, one per seed. Used only if density_type is per_seed.

constant_density (real) >0.0 [=1.0]
Density assigned to all seeds. Used only if density_type is constant.

density_random_bounds or density_rand_bounds (array) [no default]
Upper and lower bounds used to assign the random density initial conditions. Used only if
density_type is random.

radius_type (enumerated) [=constant]
Type of seed radius specification.

constant All seeds assigned the same radius.

per_seed Use a list of radii, one density per seed.

random Seed radii are randomly assigned.

seed_radii or radii (array) (no default)
List of seed radii, one per seed. Used only if radius_type is per_seed.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.56

constant_radius real >0.0 (=1.0)
Radius assigned to all seeds. Used only if radius_type is constant.

radius_random_bounds or radius_rand_bounds (array) (no default)
Upper and lower bounds used to assign the random density initial conditions. Used only if
density_type is random.

velocity_type (enumerated) [=use_flow_velocity]
Type of seed velocity specification.

use_flow_velocity or
use_flow

Use the flow velocity at the seed location.

constant All seeds assigned the same velocity.

zero All seeds assigned a zero velocity.

per_seed Use a list of velocities, one velocity per seed.

random Seed velocities are randomly assigned.

particle_velocity_multiplier (real) >=0.0, <=1.0 [=1.0]
When velocity_type equals use_flow_velocity, the particle velocity is set to the flow velocity at
the seed location multiplied by particle_velocity_multiplier. Used only if velocity_type is
use_flow_velocity.

seed_velocity or seed_vel (array) [no default]
List of seed velocities, one per seed. Used only if velocity_type is per_seed.

constant_velocity or vel (array) [={0,0,0}]
Velocity assigned to all seeds. Used only if velocity_type is constant.

velocity_random_bounds or vel_rand_bounds (array) [no default]
Upper and lower bounds used to assign the random velocity initial conditions. Used only if
velocity_type is random.

time_type (enumerated) [=zero]
Type of seed time specification.

zero All seeds assigned a time of 0.

constant All seeds assigned an identical time.

per_seed Use a list of times, one time per seed.

emission_times Use a list of times. A copy of all the seeds are emitted at each
time.

seed_time or time (real) [=0]
Time assigned to all seeds. Used only if time_type is constant.

seed_times or times (array) [no default]
List of seed times, one per seed. Used only if time_type is per_seed.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.57

emission_time_type (enumerated) [=series]
Type of emission seed time specification. The number of particles in the simulation will be the
number of seeds times the number of emission times.

time_series or series Use a list of emission times.

time_interval or interval Specify times by start and stop times and a time interval.

emission_times (array) [no default]
List of emission times. Used only if emission_time_type is time_series.

emission_start_time or etime_start (real) [=0]
First emission time. Used only if emission_time_type is interval.

emission_stop_time or etime_stop (real) [=0]
Last emission time. Used only if emission_time_type is interval.

emission_time_interval or etime_interval (real) [=0]
Time interval between successive emission times. Used only if emission_time_type is interval.
When emission_time_type is interval, the emission times always include emission_start_time
and emission_stop_time regardless of the value of emission_time_interval.

stretch_type (enumerated) [=constant]
Type of seed stretch specification.

constant All seeds assigned the same stretch vector.

random Stretch vectors are randomly assigned.

per_seed Use a list of stretch vectors.

constant_stretch (array) [={1,0,0}]
Stretch vector assigned to all seeds. Used only if stretch_type is constant.

seed_stretch (array) [no default}
List of stretch vectors, one per seed. Used only if stretch_type is per_seed.

random_stretch_length (real) [=1]
Value of random stretch length. Used only if stretch_type is random.

component_type (enumerated) [=none]
Type of seed component specification.

none No components are assigned.

constant All seeds assigned the same component vector.

random Component vectors are randomly assigned.

per_seed Use a list of stretch vectors.

distributed All components of each seed have value 0 excepting a
randomly selected one with a value of 1.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.58

constant_components (array) [no default]
If component_type is constant, the component vector assigned to all seeds. If component_type is
distributed, the array is used to construct bins, one for each component. Using these bins, seeds
are randomly assigned one component with a value of 1.

seed_components or seed_comp (array) [no default]
List of components vectors, one per seed. Used only if component_type is per_seed.

component_random_bounds or comp_rand_bounds (array) [no default]
Upper and lower bounds used to assign the random component initial conditions. The array should
have two rows, one for each bound. The number of columns in each row equal must the number
of particle components. Use only if component_type is random.

turbulence_random_seed_type (enumerated) [=constant]
Type of turbulence random seed specification.

constant All particle seeds assigned the same random seed.

per_seed Used a list of random seeds.

constant_turbulence_random_seed or turb_seed (integer) [=1]
Turbulence random seed assigned to all particle seeds. The random seed actually used for each
particle is this value plus the internal seed id. Used only if turbulence_random_seed_type is
constant.

turbulence_random_seeds (array) [no default]
List of turbulence random seeds, one per seed. The random seed actually used for the particles
are these values added to the internal seed ids. Used only if turbulence_random_seed_type is
per_seed.

Description
The PARTICLE_SEED command defines a set of particles and initial conditions for those particles. The
initial conditions that can be set by the PARTICLE_SEED command are

• particle ids

• particle set marker

• position (coordinates)

• radius

• density

• velocity

• time

• stretch vector

• turbulence random seed

User equation initial conditions for a set of particles are defined by the
USER_EQUATION_INITIAL_CONDITION command.

There needs to be at least one PARTICLE_SEED command in a trace input file, but as many
PARTICLE_SEED commands as necessary are allowed. A unique set of particles is defined for each

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.59

unique qualifier name used in a PARTICLE_SEED command. For example, two separate sets of particles,
four particles in all, are defined if the following two commands appear in the input file:

PARTICLE_SEED("seed_group_1") {
 coordinates_type = per_seed
 seed_coordinates = { 11, -0.05, 0.1, 0.0;
 12, -0.05, 0.2, 0.0
 }
}
PARTICLE_SEED("seed_group_2") {
 coordinates_type = per_seed
 seed_coordinates = { 21, -0.05, 0.1, 0.0;
 22, -0.05, 0.2, 0.0
 }
}

Particle coordinates are assigned explicitly only if coordinates_type equals per_seed, in which case
the number of seeds in the particle set equals the number of particle id and positions provided by
the seed_coordinates parameter. In the example above, there are two particles in each particle set.
If the coordinates of a seed fall outside the AcuSolve flow domain, the seed is ignored and does not
participate in the particle trace. Particle ids are assigned explicitly only if coordinates_type equals
per_seed and seed_ids_type equals user.

• If coordinates_type equals per_seed but seed_ids_type does not equal user, the seed id values
in the seed_coordinates parameter are ignored, and the particle ids are automatically assigned
based on the value of seed_ids_type.

• If coordinates_type does not equal per_seed and seed_ids_type does equal user,
seed_ids_type is reset to global.

• If seed_ids_type equals global, the particles are assigned a unique id between 1 and the total
number of seeds in all the particle seed sets.

• If seed_ids_type equals local, the particles are assigned an id between 1 and the number of seeds
specified in the current PARTICLE_SEED command.

In the example above, the four seeds are assigned seed ids of 11, 12, 21, and 22. If the parameter
seed_ids_type is set to local in both particle seed commands, the four seeds will have ids of 1, 2, 1,
and 2. If the parameter seed_ids_type is set to global in both particle seed commands, the four seeds
will have ids of 1, 2, 3, and 4. The parameter seed_ids_type does not need to have the same value in
all the seed groups. For example, if seed_ids_type is set to user in the first seed group and global in
the second, the four seeds will have ids of 11, 12, 3, and 4.

If coordinates_type does not equal per_seed, the number of seeds is specified, and the particle
coordinates are automatically assigned based on other command parameters:

• If fluid_elements is the name of an AcuSolve element set, for example, the command

ELEMENT_SET("fluid_elements") {
 ...
}

appears in the AcuSolve input file for the AcuSolve run used by AcuTrace, the following PARTICLE_SEED
command initializes a set of particles with initial positions randomly distributed throughout the AcuSolve
element set fluid_elements:

PARTICLE_SEED("seeds") {

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.60

 ...
 coordinates_type = volume_random
 element_set = "fluid_elements"
 number_of_seeds = 20
 ...
}

• If inflow is the name of an AcuSolve particle surface, for example, if either the command

PARTICLE_SURFACE("inflow") {
 ...
}

or the command

SIMPLE_BOUNDARY_CONDITION("inflow") {
 ...
}

appears in the AcuSolve input file for the AcuSolve run used by AcuTrace, the following PARTICLE_SEED
command initializes a set of particles with initial positions randomly distributed on the AcuSolve particle
surface inflow:

PARTICLE_SEED("seeds") {
 ...
 coordinates_type = surface_random
 particle_surface = "inflow"
 number_of_seeds = 20
 ...
}

while the following PARTICLE_SEED command initializes a set of particles with initial positions randomly
distributed in a mass flux weighted manner on the AcuSolve particle surface inflow:

PARTICLE_SEED("seeds") {
 ...
 coordinates_type = surface_flux_weighted
 particle_surface = "inflow"
 number_of_seeds = 20
 ...
}

• A set of particles with positions randomly distributed in a rectangular region is initialized by the
command

PARTICLE_SEED("seeds") {
 ...
 coordinates_type = region_random
 region_bounding_box = {0,1,2;3,4,5}
 number_of_seeds = 20
 ...
}

When coordinates_type equals region_random, particle positions that fall outside the flow domain are
discarded. If this happens, the number of particles initialized is less than the value of number_of_seeds.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.61

• Values of coordinates_type equal to volume_uniform, surface_uniform, and region_uniform
currently result in the same seeding as volume_random, surface_uniform, and region_random,
respectively.

For coordinates_type of surface_uniform, surface_random, and surface_flux_weighted, the parameter
particle_surface_offset defines an offset for the initial particle positions from the surface as a
fraction of the representative element length. In other words, when particle_surface_offset is 0,
the positions are directly on the surface whereas for a non-zero value they are moved into the element
adjacent to the surface. This is particularly useful if the surface is a no-slip wall. In this case, if the
particle_surface_offset is 0, the particles will never move since the velocity at the wall is 0 for all
time. For a non-zero value, the particles do move because they are put into the fluid next to the wall.

Particle masses are not input directly. Instead, particle densities and radii are specified. The particle
masses are then initialized to the particle density times the particle volume. The particle radius and
density inputs affect the particle trace only if the finite mass particle equation is used. If the massless
particle equation is used, the particle densities and radii are still assigned to the particles but have no
effect on the particle trace.

The initial particle densities can be assigned in one of three ways:

• as a constant over the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 density_type = constant
 constant_density = 1.0
 ...
}

• per seed, for example,

PARTICLE_SEED("seeds") {
 ...
 density_type = per_seed
 seed_densities = { 0.9, 0.7, 1.2, 1.3, 1.05 }
 ...
}

• randomly, for example,

PARTICLE_SEED("seeds") {
 ...
 desnity_type = random
 density_random_bounds = {0.5, 1.5 }
 ...
}

When density_type equals random, the density of each seed is randomly assigned a value between the
values of density_random_bounds, here, between 0.5 and 1.5.

The initial values of the particle radii can also be assigned in one of three ways:

• as constant over the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 radius_type = constant

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.62

 constant_radius = 0.0001
 ...
}

• per seed, for example,

PARTICLE_SEED("seeds") {
 ...
 radius_type = per_seed
 seed_radii = { 1.1e-4, 9.0e-5, 1.2e-4, 0.85e-4, 1.01e-4 }
 ...
}

• randomly, for example,

PARTICLE_SEED("seeds") {
 ...
 density_type = random
 desity_random_bounds = { 9.0e-5, 1.1e-4 }
 ...
}

When radius_type equals random, the radius of each seed is randomly assigned a value between the
values of radius_random_bounds, here, between 9.0e-5 and 1.1e-4.

Note: The radius and density of a particle is constant in time. The mass of a particle is
therefore constant as well.

Particle velocity initialization is relevant only when the finite mass particle equation is used. If the
massless particle equation is used, particle velocity inputs are ignored because the particle velocity
always equals the flow velocity.

Particle velocities can be initialized in one of six ways:

• to zero for all seeds in the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 velocity_type = zero
 ...
}

• to the flow velocity at the seed location, for example,

PARTICLE_SEED("seeds") {
 ...
 velocity_type = use_flow_velocity
 particle_velocity_multiplier = 1.0
 ...
}

• to a constant times the flow velocity, for example,

PARTICLE_SEED("seeds") {
 ...
 velocity_type = use_flow_velocity
 particle_velocity_multiplier = 0.9

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.63

 ...
}

• as a constant over the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 velocity_type = constant
 constant_velocity = { 0.7, 0.9, 1.1 }
 ...
}

• per seed, for example,

PARTICLE_SEED("seeds") {
 ...
 velocity_type = per_seed
 seed_velocity = { 1.0, 1.1, 0.8 ;
 0.85, 0.95, 1.3 ;
 1.35, 1.1, 0.65 ;
 0.7, 0.8, 1.4
 }
 ...
}

• randomly, for example,

PARTICLE_SEED("seeds") {
 ...
 velocity_type = random
 velocity_random_bounds = { 0.65, 0.75, 0.6 ;
 1.4, 1.2, 1.5
 }
 ...
}

When velocity_type equals random, each component of the velocity of a seed is randomly assigned
a value between the values of velocity_random_bounds. In the example above, the x-component is
randomly assigned a value between 0.65 and 1.4, the y-component between .75 and 1.2, and the z-
component between .6 and 1.5.

Initial particle times can be set in one of four ways:

• An initial time of 0 is assigned to all the particles in a particle set if time_type is zero.

• To assign the same non-zero constant time to all the particles, use, for example,

PARTICLE_SEED("seeds") {
 ...
 time_type = constant
 time = 20.0
 ...
}

• To assign a unique time for each particle, use, for example:

PARTICLE_SEED("seeds") {
 ...
 time_type = per_seed

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.64

 times = Read("seed_times")
 ...
}

The number of values specified by the times must equal the number of seeds in the set.

• To assign a series of emission times to all the particles in the current set, use, for example,

PARTICLE_SEED("seeds") {
 ...
 time_type = emission_times
 emission_time_type = time_series
 emission_times = {
 0.0 ;
 1.0;
 2.0;
 3.0
 }
 ...
}

The total number of particles initialized when time_type equals emission_times equals the number of
seeds times the number of emission times. For example, for the command

PARTICLE_SEED("seeds") {
 coordinates_type = per_seed
 seed_coordinates = {
 1, -0.05, 0.1, 0.0;
 2, -0.05, 0.2, 0.0
 }
 ...
 time_type = emission_times
 emission_time_type = time_interval
 emission_start_time = 0.0
 emission_stop_time = 3.0
 emission_time_interval = 1.0
 ...
}

there are eight particles in all. There are four particles at (-0.05, 0.1, 0.0) with initial times of 0.0, 1.0,
2.0, and 3.0, and four particles at (-0.05, 0.2, 0.0) with the same four initial times.

Initial stretch vectors can be assigned in one of three ways:

• a constant over the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 stretch_type = constant
 constant_stretch = { 1.0, 0.0, 1.0 }
 ...
}

• per seed, for example,

PARTICLE_SEED("seeds") {
 ...
 stretch_type = per_seed
 seed_stretch = { 1, 0, 0; 0, 1, 0; 1, 1, 1; 0, 0, 1 }
 ...

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.65

}

• randomly, for example,

PARTICLE_SEED("seeds") {
 ...
 stretch_type = random
 random_stretch_length = 1.0
 ...
}

When stretch_type equals per_seed, the number of stretch vectors (four in the example shown) must
equal the number of seeds in the seed set. When stretch_type equals random, each component of
each stretch vector is randomly assigned a value between 0 and the value of random_stretch_length.

The initial values of the particle component vectors can be assigned in one of four ways. In the following
example, it is assumed that number_particle_components is set to five in the EQUATION command.

• a constant over the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 component_type = constant
 constant_components = { 0.0, 0.0, 1.0, 1.0, 0.0 }
 ...
}

• per seed, for example,

PARTICLE_SEED("seeds") {
 ...
 component_type = per_seed
 seed_components = { 1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0 }
 ...
}

• randomly, for example,

PARTICLE_SEED("seeds") {
 ...
 component_type = random
 component_random_bounds = {0.0, 2.0, 4.0, 3.0, 4.0 ;
 1.0, 3.0, 5.0, 4.0, 5.0
 }
 ...
}

• randomly distributed over the seeds, for example,

PARTICLE_SEED("seeds") {
 ...
 component_type = distributed
 constant_components = { 1.0, 2.0, 1.0, 0.5, 1.5 }
 ...
}

When component_type equals constant, all seeds in the seed set are assigned the same component
vector, (0.0, 0.0, 1.0, 1.0, 0.0) in the example shown. When component_type equals per_seed, the

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.66

number of initial component vectors, three in the example shown, must equal the number of seeds
in the seed set. When component_type equals random, each component of each seed is randomly
assigned a value between the corresponding values of component_random_bounds. Here, the first
components all lie between 0.0 and 1.0, the second between 2.0 and 3.0, and so on.

When component_type equals distributed, the values of constant_components represent bin widths.
For the example shown, five bins are constructed: 0.0 to 1.0; 1.0 to 3.0; 3.0 to 4.0; 4.0 to 4.5; 4.5 to
6. For each seed, a random number is drawn between the lower bound of the lowest bin and the upper
bound of the highest bin. That number is then used to determine a bin number. The component for that
bin is set to 1; the components for the other bins are set to 0. For the example show, random numbers
are drawn between zero and six. If the random draw for the first seed is 4.1, the first seed is assigned
a component vector of (0.0, 0.0, 0.0, 1.0, 0.0) because 4.1 falls in the fourth bin, that is, it is between
4.0 and 4.5. If the draw for the second seed is 2.7, the second seed is assigned a component vector
of (0.0, 1.0, 0.0, 0.0, 0.0) because 2.7 falls in the second bin, that is, it is between 1.0 and 3.0. This
process is repeated for all the seeds in the seed group.

Note: The particle component vectors retain their initial values throughout the particle
trace, that is, they are constant in time.

The initial turbulent seed can be assigned in one of two ways:

• a constant over the seed set, for example,

PARTICLE_SEED("seeds") {
 ...
 turbulence_random_seed_type = constant
 turbulence_random_seed = 1.0
 ...
}

• per seed, for example,

PARTICLE_SEED("seeds") {
 ...
 turbulence_random_seed_type = per_seed
 turbulence_random_seeds = { 1; 3; 99; -3; 17 }
 ...
}

When turbulence_random_seed_type equals per_seed, the number of turbulent seeds, five in the
example shown, must equal the number of seeds in the seed set.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.67

USER_EQUATION_INITIAL_CONDITION
Specifies the initial user equation values for a particle set and a single user equation.

Type
AcuTrace Command

Syntax
USER_EQUATION_INITIAL_CONDITION ("name") {parameters...}

Qualifier
User-given name.

Parameters
particle_seed or seed (string) [no default]

The name of the particle set. Must be a qualifier used in one of the PARTICLE_SEED commands.

user_equation (string) [no default]
The name of the user equation. Must be a qualifier used in one of the USER_EQUATION commands.

type (enumerated) [=constant]
The type of initial condition specification.

constant Assign the same initial condition to all seeds.

per_seed Use a list of initial conditions.

random Randomly assign initial condition.

constant_values (array) [no default]
User equation initial condition assigned to all seeds. The size of the array must equal the number
of variables in the user equation. Use only if type is constant.

seed_values (array) [no default]
List of initial condition vectors, one per seed. The number of columns in each row must the
number of variables in the user equation. The number of rows must equal the number of seeds in
the seed group. Use only if type is per_seed.

random_bounds (array) [no default]
Upper and lower bounds used to assign the random initial conditions. The array should have
two rows, one for each bound. The number of columns in each row equal must the number of
variables in the user equation. Use only if type is random.

Description
Initial conditions must be assigned for every user equation that appears in the user_equations
parameter of the EQUATION command. The initial conditions for each such equation are assigned
per seed set. The USER_EQUATION_INITIAL_CONDITION command sets the initial conditions for the
pairing of a single user equation with a single particle seed set. Every pairing of a user equation
appearing in the user_equations parameter and a particle seed set must have an associated

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.68

USER_EQUATION_INITIAL_CONDITION command. For example, if there are two user equations, user1
and user2, and three seed sets, seed1, seed2, and seed3, for example,

EQUATION {
 ...
 user_equations = {user1, user2}
}
PARTICLE_SEED("seed1") {
 ...
}
PARTICLE_SEED("seed2") {
 ...
}
PARTICLE_SEED("seed3") {
 ...
}

there must be six USER_EQUATION_INITIAL_CONDITION commands:

USER_EQUATION_INITIAL_CONDITION("seed1_user1") {
 particle_seed = "seed1"
 user_equation = "user1"
 ...
}
USER_EQUATION_INITIAL_CONDITION("seed1_user2") {
 particle_seed = "seed1"
 user_equation = "user2"
 ...
}
USER_EQUATION_INITIAL_CONDITION("seed2_user1") {
 particle_seed = "seed2"
 user_equation = "user1"
 ...
}
USER_EQUATION_INITIAL_CONDITION("seed2_user2") {
 particle_seed = "seed2"
 user_equation = "user2"
 ...
}
USER_EQUATION_INITIAL_CONDITION("seed3_user1") {
 particle_seed = "seed3"
 user_equation = "user1"
 ...
}
USER_EQUATION_INITIAL_CONDITION("seed3_user2") {
 particle_seed = "seed3"
 user_equation = "user2"
 ...
}

The user given names, seed1_user1, and so on, do not need to follow the convention used in this
example, as long as each seed set and user equation pairing is assigned a unique name.

Initial conditions can be assigned in one of three ways. To illustrate, assume seed set seed1 has three
seeds and user function user1 has four variables:

• a constant over the seed set, for example,

USER_EQUATION_INITIAL_CONDITION("seed1_user1") {
 particle_seed = "seed1"
 user_equation = "user1"

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.69

 type = constant
 constant_values = { 1.0, 2.0, 3.0, 4.0 }
}

• per seed, for example,

USER_EQUATION_INITIAL_CONDITION("seed1_user1") {
 particle_seed = "seed1"
 user_equation = "user1"
 type = per_seed
 constant_values = { 1.0, 2.0, 3.0, 4.0 ;
 1.1, 2.3, 2.9, 3.7 ;
 1.2, 2.4, 3.1, 4.2
 }
}

• randomly, for example,

USER_EQUATION_INITIAL_CONDITION("seed1_user1") {
 particle_seed = "seed1"
 user_equation = "user1"
 type = random
 random_bounds = { 1.0, 1.9, 2.8, 3.5 ;
 2.0, 3.5, 4.1, 4.7
 }
}

When type equals per_seed, the number of initial value vectors, three in the example shown, must
equal the number of seeds in the seed set. When type equals random, each component of each
user equation value is randomly assigned a value between the corresponding bounds. Here, the first
components all lie between 1.0 and 2.0, the second between 1.9 and 3.5, and so on.

A USER_EQUATION_INITIAL_CONDITION command is allowed but not required for pairings of particle
seed groups with user equations that do not appear in the user_equations parameter of the EQUATION
command. For example, in the following:

EQUATION {
 ...
 user_equations = {user1}
}
PARTICLE_SEED("seed1") {
 ...
}
USER_EQUATION("user1") {
 ...
}
USER_EQUATION("user2") {
 ...
}

the command

USER_EQUATION_INITIAL_CONDITION("seed1_user2") {
 particle_seed = "seed1"
 user_equation = "user2"
 ...
}

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Particle Data Commands p.70

allowed but not required. In fact, since user2 is not listed by the user_equations parameter, the
command USER_EQUATION_INITIAL_CONDITION("seed1_user2") command has no effect.

A pairing of a seed set and a user equation can only appear in one USER_EQUATION_INITIAL_CONDITION
command. If the same pairing of seed set and user equation appears in more than one
USER_EQUATION_INITIAL_CONDITION command, an error will be reported, for example, if the following
two commands are used:

USER_EQUATION_INITIAL_CONDITION("seed1_user2_a") {
 particle_seed = "seed1"
 user_equation = "user2"
 ...
}
USER_EQUATION_INITIAL_CONDITION("seed1_user2_b") {
 particle_seed = "seed1"
 user_equation = "user2"
 ...
}

Proprietary Information of Altair Engineering

Output Commands 5

Output Commands

The output of a problem is specified by the commands in this chapter.

This chapter covers the following:

• TRACE_OUTPUT (p. 72)

• TIME_CUT_OUTPUT (p. 75)

• POINCARE_OUTPUT (p. 78)

• INTERPOLATE_OUTPUT (p. 81)

All four commands have a boolean parameter active controlling whether the output type (trace, time
cut, Poincare, interpolate) is active or not. At least one output type must be active, but otherwise any
number of output types can be active. All AcuTrace output files are written to the directory given by the
working_directory parameter of the FLOW_FIELD command. By default, this directory is ACUSIM.DIR.

The file format for output is specified by a format parameter. The available formats are

• bin_rec

• binary

• ascii

The bin_rec format is the default. The other two formats are provided for backward compatibility
with an older version of AcuTrace. Trace, timecut, and Poincare output written in the bin_rec format
can be converted to a number of useful formats (Fieldview, EnSight, and so on) by the AcuTransTrace
command. It is recommended that the bin_rec format be used when any of these three output types
are active. INTERPOLATE_OUTPUT is a legacy output type provided for backward capability. The file
format is specified by the AcuRunTrace file_format command option.

Altair® AcuSolve® 2025
Output Commands p.72

TRACE_OUTPUT
Specifies parameters for the output of path line segment endpoints.

Type
AcuTrace Command

Syntax
TRACE_OUTPUT {parameters}

Qualifier
This command has no qualifier.

Parameters
active (boolean) [=off]

Flag specifying if trace output is active.

output_frequency (integer) [=1]
Segment frequency at which to output the endpoints.

flow_state_data or flow_state (boolean) [=off]
Flag specifying whether to include the flow state in the output.

flow_gradient_data or flow_gradient (boolean) [=off]
Flag specifying whether to include gradients of the flow state in the output.

Description
Particle traces are computed by AcuTrace as a series of segments. Trace output records the endpoints
of all the segments. The endpoints for all particles are recorded. The parameter output_frequency
specifies how often to record the endpoints. For example,

TRACE_OUTPUT {
 active = on
 output_frequency = 5
 ...
}

specifies that every fifth segment endpoint is recorded.

The active, flow_state_data, and flow_gradient_data parameters control what information is
recorded. No trace output is recorded unless active = on. By default, all particle outputs and no flow
outputs are recorded when trace output is active.

Particle values are the state of the particle, that is, its position, time, particle velocity, and so on. The
flow outputs are found by interpolating the AcuSolve flow field to the current position and time of the
particle.

Particle outputs always include

• Seed ID

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.73

• Coordinates

• Time

• Particle velocity

• Element ID

• Element set ID

• Marker

• Particle velocity magnitude

• Trace length

They also include

• Particle mass

• Particle density

• Particle radius

if the parameter particle equals finite_mass model in the EQUATION command,

• Component values

if the parameter number_particle_components in the EQUATION command is non-zero,

• User equation values

if one or more user equations are specified in the user_equations parameter of the EQUATION
command.

• Turbulence random seed

if the parameter turbulent_trace equals on in the TRACE_PARAMETERS command and

• Stretch vector

• Stretch magnitude

• Log stretch magnitude

• Stretch rate magnitude

if the parameter stretch does not equal none in the EQUATION command.

Flow state values always include

• Flow velocity

• Flow pressure

• Flow velocity magnitude

• Flow strain rate magnitude

They also include

• Flow temperature

• Flow species

• Flow eddy viscosity

if these are available in the AcuSolve database.

Flow gradient values currently include only

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.74

• Gradient of flow velocity

Note: For the massless particle motion equation, the particle and the flow velocity fields are
identical except possibly for particle positions in elements next to a wall.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.75

TIME_CUT_OUTPUT
Specifies parameters for the output of time cuts.

Type
AcuTrace Command

Syntax
TIME_CUT_OUTPUT {parameters}

Qualifier
This command has no qualifier.

Parameters
active (boolean) [=off]

Flag specifying if time cut output is active.

time_cut_type or tcut_type (enumerated) [=time_series]
Type of time cut specification.

time_series or series Use a user-defined series of times.

time_interval Use end points and an interval.

time_cuts or tcuts (array) [={}]
List of time values. Used only if time_cut_type is time_series.

time_cut_start_time or tcut_start (real) [=0]
Initial time cut value. Used only if time_cut_type is time_interval.

time_cut_stop_time or tcut_stop (real) [=0]
Final time cut value. Used only if time_cut_type is time_interval.

time_cut_interval or tcut_interval (real) [=0]
Interval between successive time cuts. Used only if time_cut_type is time_interval.

flow_state_data or flow_state (boolean) [=off]
Flag specifying whether to include the flow state in the output.

flow_gradient_data or flow_gradient (boolean) [=off]
Flag specifying whether to include gradients of the flow state in the output.

Description
Particle traces are computed by AcuTrace as a series of segments. Time cut output is recorded for
all active particles at the time cuts. The particle path is interpolated in time between the segment
endpoints steps on either side of the time cut.

Time cuts can be specified either by a list or by range and an interval. For example, the command

TIME_CUT_OUTPUT {
 active = on

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.76

 time_cut_type = time_series
 time_cuts = { 1.1, 3.2, 7.3, 13.4 }
 ...
}

specifies time cut output at times of 1.1, 3.2, 7.3, and 13.4. The command

TIME_CUT_OUTPUT {
 active = on
 time_cut_type = time_interval
 time_cut_start_time = 0.
 time_cut_stop_time = 1000.
 time_cut_interval = 10.
 ...
}

specifies that time cut output be written every 10 time units beginning at time zero and ending at
time 1000. When time_cut_type equals time_interval, time cut values of time_cut_start_time and
time_cut_stop_time are always used regardless of the value of time_cut_interval.

Time cuts that occur earlier than any of the particle start times or after all the particles have become
inactive are ignored. It is therefore always safe to provide more than enough time cut values. If
TIME_CUT_OUTPUT is the only active output type, the particle trace terminates when a time equal to the
largest time cut is reached by all the particles.

The active, flow_state_data, and flow_gradient_data parameters control what information is
recorded. No trace output is recorded unless active = on. By default, all particle outputs and no flow
outputs are recorded when trace output is active.

Particle values are the state of the particle, that is, its position, time, particle velocity, and so on. The
flow outputs are found by interpolating the AcuSolve flow field to the current position and time of the
particle.

Particle outputs always include

• Seed ID

• Coordinates

• Time

• Particle velocity

• Element ID

• Element set ID

• Marker

• Particle velocity magnitude

• Trace length

They also include

• Particle mass

• Particle density

• Particle radius

if the parameter particle equals finite_mass model in the EQUATION command,

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.77

• Component values

if the parameter number_particle_components in the EQUATION command is non-zero,

• User equation values

if one or more user equations are specified by the user_equations parameter of the EQUATION
command.

• Turbulence random seed

if the parameter turbulent_trace equals on in the TRACE_PARAMETERS command and

• Stretch vector

• Stretch magnitude

• Log stretch magnitude

• Stretch rate magnitude

if the parameter stretch does not equal none in the EQUATION command.

Flow state values always include

• Flow velocity

• Flow pressure

• Flow velocity magnitude

• Flow strain rate magnitude

They also include

• Flow temperature

• Flow species

• Flow eddy viscosity

if these are available in the AcuSolve database.

Flow gradient values currently include only

• Gradient of flow velocity

Note: For the massless particle motion equation, the particle and the flow velocity fields are
identical except possibly for particle positions in elements next to a wall.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.78

POINCARE_OUTPUT
Specifies parameters for the output of the Poincare plane sections.

Type
AcuTrace Command

Syntax
POINCARE_OUTPUT {parameters}

Qualifier
This command has no qualifier.

Parameters
active (boolean) [=off]

Flag specifying if Poincare output is active.

poincare_sections or psections (array) [={}]
Definition of the Poincare section rectangles. Each row is of the form x1, y1, z1,x2 ,y2 ,z2, x3, y3,
z3 and defines a rectangle by the prescription given below.

flow_state_data or flow_state (boolean) [=off]
Flag specifying whether to include the flow state in the output.

flow_gradient_data or flow_gradient (boolean) [=off]
Flag specifying whether to include gradients of the flow state in the output.

Description
Particle traces are computed by AcuTrace as a series of segments. Poincare plane output is written only
when a particle path crosses through and inside of a Poincare section rectangle. The particle path is
interpolated between the segment endpoints that are on either side of the rectangle.

The Poincare section rectangles are defined by three points as follows: the first two points define one
edge of the rectangle, and the third point is projected to the closest plane that is normal to this edge
and passes through one of the first two points. The fourth point is constructed to finish the rectangle. In
the simplest case, the three points can be three of the vertices of the rectangle.

For example, the following command defines two Poincare section rectangles, one with vertices at
(.5587,-10.0, -10.0), (.5587,-10.0, 10.0), (.5587,10.0, -10.0), and (.5587,10.0, 10.0), and the other
with vertices at (-.0499,-10.0, -10.0), (-.0499,-10.0, 10.0), (-.0499,10.0, -10.0), and (-.0499,10.0,
10.0):

POINCARE_OUTPUT {
 active = on
 poincare_sections = { .5587, -10.0, -10.0,
 .5587, -10.0, 10.0,
 .5587, 10.0, -10.0 ;
 -.0499, -10.0, -10.0,
 -.0499, -10.0, 10.0,
 -.0499, 10.0, -10.0 ;

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.79

 }
 ...
}

The active, flow_state_data, and flow_gradient_data parameters control what information is
recorded. No trace output is recorded unless active = on. By default, all particle outputs and no flow
outputs are recorded when trace output is active.

Particle values are the state of the particle, that is, its position, time, particle velocity, and so on. The
flow outputs are found by interpolating the AcuSolve flow field to the current position and time of the
particle.

Particle outputs always include

• Seed ID

• Coordinates

• Time

• Particle velocity

• Element ID

• Element set ID

• Marker

• Particle velocity magnitude

• Trace length

They also include

• Particle mass

• Particle density

• Particle radius

if the parameter particle equals finite_mass model in the EQUATION command,

• Component values

if the parameter number_particle_components in the EQUATION command is non-zero,

• User equation values

if one or more user equations are specified by the user_equations parameter of the EQUATION
command.

• Turbulence random seed

if the parameter turbulent_trace equals on in the TRACE_PARAMETERS command and

• Stretch vector

• Stretch magnitude

• Log stretch magnitude

• Stretch rate magnitude

if the parameter stretch does not equal none in the EQUATION command.

Flow state values always include

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.80

• Flow velocity

• Flow pressure

• Flow velocity magnitude

• Flow strain rate magnitude

They also include

• Flow temperature

• Flow species

• Flow eddy viscosity

if these are available in the AcuSolve database.

Flow gradient values currently include only

• Gradient of flow velocity

Note: For the massless particle motion equation, the particle and the flow velocity fields are
identical except possibly for particle positions in elements next to a wall.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.81

INTERPOLATE_OUTPUT
Specifies parameters for the output of particle and flow values at the particle seed locations.

Type
AcuTrace Command

Syntax
INTERPOLATE_OUTPUT {parameters}

Qualifier
This command has no qualifier.

Parameters
active (boolean) [=off]

Flag specifying if interpolate output is active.

Description
Interpolate output is a legacy output type provided for backward capability.

Interpolate output does not require any particle tracing. It records the values of the particle and flow
outputs at the particle seed locations at the earliest seed time. The output is written to one or more
files with extension .pin in the working directory.

Interpolate output can be useful for determining which particle seeds are in the flow domain. Only seeds
that are in the flow domain are recorded in the .pin files. To use interpolate output for this purpose, it
is recommended that format be set to ascii and that AcuRunTrace be run in serial mode in which case
a single .pin file is written.

The active, flow_state_data, and flow_gradient_data parameters control what information is
recorded. No trace output is recorded unless active = on. By default, all particle outputs and no flow
outputs are recorded when trace output is active.

Particle values are the state of the particle, that is, its position, time, particle velocity, and so on. The
flow outputs are found by interpolating the AcuSolve flow field to the current position and time of the
particle.

Particle outputs always include

• Seed ID

• Coordinates

• Time

• Particle velocity

• Element ID

• Element set ID

• Marker

• Particle velocity magnitude

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Output Commands p.82

• Trace length

They also include

• Particle mass

• Particle density

• Particle radius

if the parameter particle equals finite_mass model in the EQUATION command,

• Component values

if the parameter number_particle_components in the EQUATION command is non-zero,

• User equation values

if one or more user equations are specified by the user_equations parameter of the EQUATION
command.

• Turbulence random seed

if the parameter turbulent_trace equals on in the TRACE_PARAMETERS command and

• Stretch vector

• Stretch magnitude

• Log stretch magnitude

• Stretch rate magnitude

if the parameter stretch does not equal none in the EQUATION command.

Flow state values always include

• Flow velocity

• Flow pressure

• Flow velocity magnitude

• Flow strain rate magnitude

They also include

• Flow temperature

• Flow species

• Flow eddy viscosity

if these are available in the AcuSolve database.

Flow gradient values currently include only

• Gradient of flow velocity

Note: For the massless particle motion equation, the particle and the flow velocity fields are
identical except possibly for particle positions in elements next to a wall.

Proprietary Information of Altair Engineering

Functional Commands 6

Functional Commands

The functional commands, except for AUTO_SOLUTION_STRATEGY, are outlined in this chapter.

This chapter covers the following:

• RUN (p. 84)

• INCLUDE (p. 85)

• ASSIGN (p. 86)

• QUIT (p. 87)

Functional commands are differentiated from declarative commands in that they are executed
immediately; see the AcuSolve Command Reference Manual for further explanation. The purpose of the
last three commands is to facilitate writing input files.

Altair® AcuSolve® 2025
Functional Commands p.84

RUN
Processes the input data for the particle trace solver.

Type
AcuTrace Command

Syntax
RUN {parameters}

Qualifier
This command has no qualifier.

Parameters
ignore_input_error (boolean) [=off]

Flag specifying whether to ignore any errors that occur while reading the preceding commands. If
off and an error has occurred, this command is not processed.

Description
The purpose and function of this command is identical to the AcuSolve command of the same name.
Refer to the AcuSolve Command Reference Manual for details.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Functional Commands p.85

INCLUDE
Includes the contents of an external file.

Type
AcuTrace Command

Syntax
INCLUDE {parameters}

Qualifier
This command has no qualifier.

Parameters
file (string) [no default]

Name of the input files to be included.

Description
The purpose and function of this command is identical to the AcuSolve command of the same name.
Refer to the AcuSolve Command Reference Manual for details.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Functional Commands p.86

ASSIGN
Assigns a value to a variable.

Type
AcuTrace Command

Syntax
ASSIGN {parameters}

Qualifier
This command has no qualifier.

Parameters
variable or var (string) [no default]

Variable name.

value (real) [=0]
Value assigned to the variable.

Description
The purpose and function of this command is identical to the AcuSolve command of the same name.
Refer to the AcuSolve Command Reference Manual for details.

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Functional Commands p.87

QUIT
Terminates parsing the trace input file.

Type
AcuTrace Command

Syntax
QUIT {parameters}

Qualifier
This command has no qualifier.

Parameters
This command has no parameters.

Description
The purpose and function of this command is identical to the AcuSolve command of the same name.
Refer to the AcuSolve Command Reference Manual for details.

Proprietary Information of Altair Engineering

Intellectual Property Rights Notice
Copyright © 1986-2024 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual
property rights held by Altair Engineering Inc. or its affiliates. Software, other products, and materials
of Altair Engineering Inc. or its affiliates are protected under laws of the United States and laws of other
jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials
of Altair Engineering Inc. or its affiliates may be further protected by patents, additional copyrights,
additional trademarks, trade secrets, and additional other intellectual property rights. For avoidance
of doubt, copyright notice does not imply publication. Copyrights in the below are held by Altair
Engineering Inc. or its affiliates. Additionally, all non-Altair marks are the property of their respective
owners. If you have any questions regarding trademarks or registrations, please contact marketing and
legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software,
or underlying intellectual property rights of Altair Engineering Inc. or its affiliates. Usage, for example,
of software of Altair Engineering Inc. or its affiliates is governed by and dependent on a valid license
agreement.

Altair® HyperWorks®, a Design & Simulation Platform
Altair® AcuSolve® ©1997-2024

Altair® Activate® ©1989-2024

Altair® Automated Reporting Director™ ©2008-2022

Altair® Battery Damage Identifier™ ©2019-2024

Altair® CFD™ ©1990-2024

Altair Compose® ©2007-2024

Altair® ConnectMe™ ©2014-2024

Altair® DesignAI™ ©2022-2024

Altair® DSim™ ©2024

Altair® EDEM™ ©2005-2024

Altair® EEvision™ ©2018-2024

Altair® ElectroFlo™ ©1992-2024

Altair Embed® ©1989-2024

Altair Embed® SE ©1989-2024

Altair Embed®/Digital Power Designer ©2012-2024

Altair Embed®/eDrives ©2012-2024

Altair Embed® Viewer©1996-2024

Altair® e-Motor Director™©2019-2024

Altair® AcuSolve® 2025
Intellectual Property Rights Notice p.89

Altair® ESAComp® ©1992-2024

Altair® expertAI™ ©2020-2024

Altair® Feko® ©1999-2024

Altair® FlightStream® ©2017-2024

Altair® Flow Simulator™ ©2016-2024

Altair® Flux® ©1983-2024

Altair® FluxMotor® ©2017-2024

Altair® GateVision PRO™ ©2002-2024

Altair® Geomechanics Director™ ©2011-2022

Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2024

Altair® HyperLife® ©1990-2024

Altair® HyperMesh® ©1990-2024

Altair® HyperMesh® CFD ©1990-2024

Altair® HyperMesh ® NVH ©1990-2024

Altair® HyperSpice™ ©2017-2024

Altair® HyperStudy® ©1999-2024

Altair® HyperView® ©1999-2024

Altair® HyperView Player® ©2022-2024

Altair® HyperWorks® ©1990-2024

Altair® HyperWorks® Design Explorer ©1990-2024

Altair® HyperXtrude® ©1999-2024

Altair® Impact Simulation Director™ ©2010-2022

Altair® Inspire™ ©2009-2024

Altair® Inspire™ Cast ©2011-2024

Altair® Inspire™ Extrude Metal ©1996-2024

Altair® Inspire™ Extrude Polymer ©1996-2024

Altair® Inspire™ Form ©1998-2024

Altair® Inspire™ Mold ©2009-2024

Altair® Inspire™ PolyFoam ©2009-2024

Altair® Inspire™ Print3D ©2021-2024

Altair® Inspire™ Render ©1993-2024

Altair® Inspire™ Studio ©1993-2024

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Intellectual Property Rights Notice p.90

Altair® Material Data Center™ ©2019-2024

Altair® Material Modeler™ ©2019-2024

Altair® Model Mesher Director™ ©2010-2024

Altair® MotionSolve® ©2002-2024

Altair® MotionView® ©1993-2024

Altair® Multi-Disciplinary Optimization Director™ ©2012-2024

Altair® Multiscale Designer® ©2011-2024

Altair® newFASANT™ ©2010-2020

Altair® nanoFluidX® ©2013-2024

Altair® NLVIEW® ©2018-2024

Altair® NVH Director™ ©2010-2024

Altair® NVH Full Vehicle™ ©2022-2024

Altair® NVH Standard™ ©2022-2024

Altair® OmniV™ ©2015-2024

Altair® OptiStruct® ©1996-2024

Altair® physicsAI™ ©2021-2024

Altair® PollEx™ ©2003-2024

Altair® PollEx™ for ECAD ©2003-2024

Altair® PSIM™ ©1994-2024

Altair® Pulse™ ©2020-2024

Altair® Radioss® ©1986-2024

Altair® romAI™ ©2022-2024

Altair® RTLvision PRO™ ©2002-2024

Altair® S-CALC™ ©1995-2024

Altair® S-CONCRETE™ ©1995-2024

Altair® S-FRAME® ©1995-2024

Altair® S-FOUNDATION™ ©1995-2024

Altair® S-LINE™ ©1995-2024

Altair® S-PAD™ ©1995-2024

Altair® S-STEEL™ ©1995-2024

Altair® S-TIMBER™ ©1995-2024

Altair® S-VIEW™ ©1995-2024

Altair® SEAM® ©1985-2024

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Intellectual Property Rights Notice p.91

Altair® shapeAI™ ©2021-2024

Altair® signalAI™ ©2020-2024

Altair® Silicon Debug Tools™ ©2018-2024

Altair® SimLab® ©2004-2024

Altair® SimLab® ST ©2019-2024

Altair® SimSolid® ©2015-2024

Altair® SpiceVision PRO™ ©2002-2024

Altair® Squeak and Rattle Director™ ©2012-2024

Altair® StarVision PRO™ ©2002-2024

Altair® Structural Office™ ©2022-2024

Altair® Sulis™ ©2018-2024

Altair® Twin Activate® ©1989-2024

Altair® UDE™ ©2015-2024

Altair® ultraFluidX® ©2010-2024

Altair® Virtual Gauge Director™ ©2012-2024

Altair® Virtual Wind Tunnel™ ©2012-2024

Altair® Weight Analytics™ ©2013-2022

Altair® Weld Certification Director™ ©2014-2024

Altair® WinProp™ ©2000-2024

Altair® WRAP™ ©1998-2024

Altair® HPCWorks®, a HPC & Cloud Platform
Altair® Allocator™ ©1995-2024

Altair® Access™ ©2008-2024

Altair® Accelerator™ ©1995-2024

Altair® Accelerator™ Plus ©1995-2024

Altair® Breeze™ ©2022-2024

Altair® Cassini™ ©2015-2024

Altair® Control™ ©2008-2024

Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2024

Altair® FlowTracer™ ©1995-2024

Altair® Grid Engine® ©2001, 2011-2024

Altair® InsightPro™ ©2023-2024

Altair® Hero™ ©1995-2024

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Intellectual Property Rights Notice p.92

Altair® Liquid Scheduling™ ©2023-2024

Altair® Mistral™ ©2022-2024

Altair® Monitor™ ©1995-2024

Altair® NavOps® ©2022-2024

Altair® PBS Professional® ©1994-2024

Altair® PBS Works™ ©2022-2024

Altair® Simulation Cloud Suite (SCS) ©2024

Altair® Software Asset Optimization (SAO) ©2007-2024

Altair® Unlimited™ ©2022-2024

Altair® Unlimited Data Analytics Appliance™ ©2022-2024

Altair® Unlimited Virtual Appliance™ ©2022-2024

Altair® RapidMiner®, a Data Analytics & AI Platform
Altair® AI Hub ©2023-2024

Altair® AI Edge™ ©2023-2024

Altair® AI Cloud ©2022-2024

Altair® AI Studio ©2023-2024

Altair® Analytics Workbench™ ©2002-2024

Altair® Graph Lakehouse™ ©2013-2024

Altair® Graph Studio™ ©2007-2024

Altair® Knowledge Hub™ ©2017-2024

Altair® Knowledge Studio® ©1994-2024

Altair® Knowledge Studio® for Apache Spark ©1994-2024

Altair® Knowledge Seeker™ ©1994-2024

Altair® IoT Studio™ ©2002-2024

Altair® Monarch® ©1996-2024

Altair® Monarch® Classic ©1996-2024

Altair® Monarch® Complete™ ©1996-2024

Altair® Monarch® Data Prep Studio ©2015-2024

Altair® Monarch Server™ ©1996-2024

Altair® Panopticon™ ©2004-2024

Altair® Panopticon™ BI ©2011-2024

Altair® SLC™ ©2002-2024

Altair® SLC Hub™ ©2002-2024

Proprietary Information of Altair Engineering

Altair® AcuSolve® 2025
Intellectual Property Rights Notice p.93

Altair® SmartWorks™ ©2002-2024

Altair® RapidMiner® ©2001-2024

Altair One® ©1994-2024

Altair® CoPilot™ ©2023-2024

Altair® License Utility™ ©2010-2024

Altair® TheaRender® ©2010-2024

OpenMatrix™ ©2007-2024

OpenPBS® ©1994-2024

OpenRadioss™ ©1986-2024

October 7, 2024

Proprietary Information of Altair Engineering

Technical Support
Altair's support resources include engaging learning materials, vibrant community forums, intuitive
online help resources, how-to guides, and a user-friendly support portal.

Visit Customer Support to learn more about our support offerings.

https://altair.com/customer-support

Index
A
AcuTrace command reference manual introduction 3
ASSIGN 86
AUTO_SOLUTION_STRATEGY 42

C
COUPLING_FIELDS 18

E
EQUATION 5

F
FINITE_MASS 31
FINITE_MASS_BOUNDARY_CONDITION 37
FLOW_FIELD 9
functional commands 83

G
global commands 4

I
INCLUDE 85
INTERPOLATE_OUTPUT 81

O
output commands 71

P
particle data commands 53
PARTICLE_SEED 54
POINCARE_OUTPUT 78

Q
QUIT 87

R
RUN 84

95

S
solution strategy commands 41
STAGGER 48

T
TIME_CUT_OUTPUT 75
TIME_SEQUENCE 44
TRACE_OUTPUT 72
TRACE_PARAMETERS 51

U
USER_EQUATION 15
USER_EQUATION_INITIAL_CONDITION 67

96

	Contents
	AcuTrace Command Reference Manual
	Global Commands
	EQUATION
	FLOW_FIELD
	USER_EQUATION
	COUPLING_FIELDS
	FINITE_MASS
	FINITE_MASS_BOUNDARY_CONDITION

	Solution Strategy Commands
	AUTO_SOLUTION_STRATEGY
	TIME_SEQUENCE
	STAGGER
	TRACE_PARAMETERS

	Particle Data Commands
	PARTICLE_SEED
	USER_EQUATION_INITIAL_CONDITION

	Output Commands
	TRACE_OUTPUT
	TIME_CUT_OUTPUT
	POINCARE_OUTPUT
	INTERPOLATE_OUTPUT

	Functional Commands
	RUN
	INCLUDE
	ASSIGN
	QUIT

	Intellectual Property Rights Notice
	Technical Support
	Index

