Altair - Mistral User Manual

Version 2025.2.0

/\ ALTAIR

CONTENTS

Contents
1 Introduction 4
2 Overview 5
2.1 Download e e 5
211 Tarfileo e 5
2.1.2 Debianpackage e e e e 5
2.1.3 RPMpackage L 5
2.2 LICENSING e 6
2.3 Datapipeline L e e e e 7
2.4 Configuration L e e e e 7
2.5 Schedulerintegration L L e 7
3 Monitoring an application 8
4 Configuring Mistral 9
4.1 LICENSE e e e e 9
4.2 Loglocations L. e e e e e e 9
4.3 Plug-inconfiguration L L e e e 9
4.4 Working directory location Lo 9
45 Errorlogo e e e e 10
4.6 Configurationfile e e 10
4.6.1 WaitProcess e e 12
46.2 Sizebins e e 12
4.7 Miscellaneous configuration L L e 12
4.7.1 Volumes e e 12
4.7.2 Durationsampling e e e e e 12
4.7.3 Otherenvironmentvariables oL 13
4.7.4 LD_PRELOAD e e e e e e 14
5 Plug-ins 15
51 Datarate e e e e e 15
6 Scheduler Integration 16
6.1 Altair PBS Professional L 16
6.2 Altair Grid Engine version 2022.1 andabove o0 16
6.3 Altair Grid Engine version 8.X e e e e e 17
6.4 Altair Accelerator L L L e 18
6.5 Altair Flowtracer e 18
6.6 IBM Spectrum LSF 19
6.7 Slurm . . . e 20
7 Container Support 21
7.1 Singularity and Apptainer L L e 21
7.0.1 PBS . . e e 21
7.2 DOCKEr o e e e 21
8 Mistral Healthcheck 22
8.1 mistral_report.sh L e 22
8.2 Mistral Healthcheckreports e 22
9 Turning Mistral on and off 23

Altair - Mistral User Manual 2 Version: 2025.2.0

CONTENTS

9.1 Disabling Mistral for specific binarieso o Lo 23
9.2 Bypassing specific programs with Mistralo o000 23
9.2.1 Bypassing schedulerinternal activityo 24

9.3 Disabling specific function wrappers with mistral 24
10 Technical reference 25
10.1 Host Memory Metrics e e e e e e e e e e 25
10.2 GPU Profiling e e e e 25
10.3Logentries L e e e e e e e e 26
10.3.1 Mountpoint Record L 27
10.3.2 Network Record e e e 31
10.3.3 Resources Recordo e 32
10.3.4 GPURecord e e e 35
10.3.5 Job Summary Record 37
10.3.6 Mount Point Summary Recordo 41

Altair - Mistral User Manual 3 Version: 2025.2.0

1 INTRODUCTION

1 Introduction

Mistral is a tool used to report on and resolve 1/0O performance issues when running complex Linux applications
on high performance compute clusters. Mistral was originally developed by Ellexus, now an Altair company.

Mistral allows you to monitor application 1/O patterns in real time, and log undesirable behaviour.

This document is a reference manual. If you would like step-by-step instructions for installing and configuring
Mistral with default settings then please consult the Mistral Quick Start Guide.

Altair - Mistral User Manual 4 Version: 2025.2.0

2 OVERVIEW

2 Overview

See the Mistral Quick Start Guide for tips on getting started with Mistral, and the docs/samples directory for
sample Mistral launch scripts and scripts for integrating with various schedulers.

2.1 Download

Go to the Altair One page and register for an account. You can then log in and download Mistral.

We have 3 formats of package, “.tar.gz”, “.deb” and “.rpm”. Select whichever is easiest for you to work with.
Mistral needs to be installed in the same location across all the machines that you wish monitor. This is most
easily achieved by installing it to a shared file system, if this is selected then there is no need to install Mistral on
each individual host.

If Mistral is not installed on a shared file system, then itis important to ensure thatetc/mistral_config.yaml
is kept consistent across the cluster.

Please make sure that you use the appropriate version of Mistral (1386, aarch64 or x86_64) for the machines
you want to run it on.

2.1.1 Tarfile

To install, just untar the product on any filesystem which is accessible from all the hosts that will run workloads.

2.1.2 Debian package

Install using your package manager. This will install Mistral to /opt/altair/mistral_2025.2.0_x86_64 by
default.

e.g.

$ sudo dpkg -i mistral_2025.2.0-0_amd64.deb

To install to a different location use the - -instdir=dir argument to dpkg.

2.1.3 RPM package

Install using your package manager. This will install Mistral to /opt/altair/mistral_2025.2.0_x86_64 by
default.

e.g.

$ sudo rpm --install mistral-2025.2.0-0.x86_64.rpm

To install in a different location use the - -prefix=<path> argumentto rpm.

Altair - Mistral User Manual 5 Version: 2025.2.0

https://admin.altairone.com/register

2 OVERVIEW

2.2 Licensing

Mistral requires a license. Please contact Altair if you do not already have a valid Mistral license. Most customers
will use an Altair floating or node-locked license. The environment variable ALTAIR_LICENSE_PATH must indi-
cate your Altair license file or license servers (as <portil>@<serverl>:<port2>@<server2>and so on).

export ALTAIR_LICENSE_PATH="/opt/licenses/mistral_lic.dat:6200@licserver"

If using a legacy Ellexus license file, the environment variable MISTRAL_LICENSE must be set to the path of
your license - either a specific license file or a directory which contains one or more license files.

export MISTRAL_LICENSE=<path to license file>

By default Mistral writes errors to MISTRAL_ERR_LOG or syslog if this is not set. When setting up Mistral
it can be useful to get license error messages output to stderr as well as the normal error log location. To do
this export the MISTRAL_CHECK=1 environment variable before starting Mistral (or running start-mistral-
monitor). This behaviour is not normally desirable when run in production - as it can change the job output.

$ export MISTRAL_CHECK=1
$ export ALTAIR_LICENSE_PATH=/opt/altair/mistral/invalid
$./bin/mistral.sh 1ls /dev/null

/dev/null

Altair licensing failure: Couldn't get license: 9
(Altair License Manager: License error
Feature(s): MISTRAL-CORES

Error Code: 9

Error Description:

Feature not found

License Path: /opt/altair/mistral/invalid

)
License is invalid. ALTAIR_LICENSE_PATH="/opt/altair/mistral/invalid",

MISTRAL_LICENSE="(null)".

Set the environment variable MISTRAL_LOG, MISTRAL_ERR_LOG and ELLEXUS_LOG_LEVEL in order to get
debugging information in MISTRAL_ERR_LOG.

export MISTRAL_LOG=<path to mistral log file>
export MISTRAL_ERR_LOG=<path to mistral error log file>
export ELLEXUS_LOG_LEVEL=license:MAJOR

Following is the list of warning and errors in MISTRAL_ERR_LOG file for different scenarios::

1. If using both MISTRAL_LICENSE and ALTAIR_LICENSE_PATH, then the warning message will be added
in the mistral error log file as Don’t set both ALTAIR_LICENSE_PATH and MISTRAL_LICENSE.

Altair - Mistral User Manual 6 Version: 2025.2.0

2 OVERVIEW

2. If the value is empty in both MISTRAL_LICENSE and ALTAIR_LICENSE_PATH, then the warning mes-
sage will be added in the mistral error log file as The value is empty in ALTAIR_LICENSE_PATH and
MISTRAL_LICENSE.

3. If not set both MISTRAL_LICENSE and ALTAIR_LICENSE_PATH, then the warning message will be added
in the mistral error log file as Set either ALTAIR_LICENSE_PATH or MISTRAL_LICENSE.

4. If using MISTRAL_LICENSE but there is a problem with it, then the either of the following warning message
to provide more details about it.

1. Failed to read license: MISTRAL_LICENSE="“<license path>".,
2. No license found, please check MISTRAL_LICENSE=“<license path>".
3. Not a valid Ellexus legacy license, event <event humber>

5. If using ALTAIR_LICENSE_PATH but there is a problem with it, then the failure message will provide more
details as Altair licensing failure: <failure message>.

6. If the license is invalid, then Mistral will not monitor the appilcation and log the error message as License
is invalid. ALTAIR_LICENSE_PATH=“<license path>", MISTRAL_LICENSE="<license path>".

2.3 Data pipeline

Mistral can be run on a single application, but to visualize data for multiple applications you will need to set up a
database, to collect the data from each application, and a dashboard, to present visualisations of the data in the
database. Mistral can push data to various databases such as Elasticsearch and Splunk.

See the Plug-ins section for more information on connecting Mistral to a database.

For customers who do not already have a log-aggregation infrastructure in place we recommend starting with
Elasticsearch, and the Grafana dashboard. See the Mistral Quick Start Guide for detailed instructions on setting
up Elasticsearch and Grafana.

2.4 Configuration

Mistral behaviour is controlled by a number of environment variables and a configuration file. See the Configuring
Mistral section for more details, and the docs/samples/mistral_start_reference.sh for an example
script setting many of these variables.

2.5 Scheduler integration

In order to deploy Mistral across your cluster, you may wish to integrate it with a scheduler, workflow manager,
or other orchestration tool. The docs/samples directory contains scripts and configuration files for many such
integrations. See the Scheduler integration section for detailed instructions.

Altair - Mistral User Manual 7 Version: 2025.2.0

3 MONITORING AN APPLICATION

3 Monitoring an application

Once Mistral has been configured it can be run using the mistral. sh script available in the bin directory of the
installation. To monitor an application you just type mistral. sh followed by your command and arguments. For
example:

$./bin/mistral.sh 1ls -1 $HOME

By default any error messages produced by Mistral will be written to the system log (syslog). Any errors that
prevent the job running as expected, such as a malformed command line, will be output to stderr.

This behaviour can be changed by the following command line options.

--errlog=<filename>
-1=<filename>

Record Mistral error messages in the specified file. If this option is not set, errors will be written to the system
log (syslog).

-q

Quiet mode. Send all error messages, regardless of severity, to the error log. Command line options are

processed in order, therefore this option must be specified first to ensure any errors parsing command line options
are sent to the error log.

In addition to monitoring single applications in this way, you may wish to integrate Mistral with your general
scheduling or job management systems, to monitor performance across your cluster. See Scheduler integration.

Altair - Mistral User Manual 8 Version: 2025.2.0

4 CONFIGURING MISTRAL

4 Configuring Mistral

Mistral is configured using environment variables and a configuration file. This section describes the principal
variables you may wish to set.

4.1 License
As described above, the ALTAIR_LICENSE_PATH environment variable must indicate your Altair license file or

license servers (as <portil>@<serverl>:<port2>@<server2> and so on). If you have a legacy Ellexus
license, MISTRAL_LICENSE should give its path instead.

If using Mistral with other Altair products, such as HyperWorks, you can specify multiple sources of licenses
e.g.

export ALTAIR_LICENSE_PATH="/tools/altair/licenses/mistral lic.dat:6200@licserver"

4.2 Log locations

The following environment variable configures the location Mistral uses for its log file.

MISTRAL_LOG The path of the file in which Mistral will log I/O activity.

This may also be set by the relavent configuration option, with the environment variable taking precedence.
See Configuration file.

If the log path contains %h at any point, the hostname is substituted for it. If a log path doesn’t contain %h, the
hostname is inserted, either at the end of the path or before a final . 1og if it exists. This helps to avoid confusion
or corruption if several Mistral jobs are running at the same time, by ensuring that log filenames always contain
the hostname.

4.3 Plug-in configuration

To use a plug-in to communicate Mistral data to your database, simply add a plugin configuration into your mistral
configuration file. See the docs/samples/ folder for example configurations to include in your mistral configu-
ration file. See Configuration file.

Plug-ins are available in the plugins directory, each plug-in has it's own documentation in this folder.

4.4 Working directory location

Mistral requires a directory, to store its working data during operation. This should be on high-performance storage,
local to each host if possible, and writable by user processes. Mistral will create per-job directories within this
top-level directory. To specify a suitable location, set the variable MISTRAL_OUTPUT_DIRECTORY. If you do not
specify this, Mistral will create a directory in /tmp.

Altair - Mistral User Manual 9 Version: 2025.2.0

4 CONFIGURING MISTRAL

4.5 Errorlog

If Mistral encounters any internal errors, it will write messages to a log file. You can specify the location of this log
file with the MISTRAL_ERR_LOG environment variable or in the configuration file. If this is not set then Mistral will
write any error messages to syslog.

4.6 Configuration file

The MISTRAL_CONFIG variable contains the path to a configuration file. If this variable isn't set, the file mis-
tral_config.yaml in the etc directory is used instead. That file as distributed sets the default configuration
as described below.

A configuration file is a YAML file with keys and values controlling various aspects of Mistral behaviour including
what will be written to the log file or plugin. The following keys and values are supported.

Key Values Default Description
output /path/to/file /tmp/mistral- Where to output Mistral reports if configured to.
%h.log See plugin option as well. Can be overriden
with MISTRAL_LOG
error /path/toffile syslog Where to output Mistral errors. Special value

syslog goes to the system log. Can be
overriden with MISTRAL_ERR_LOG

license
path string Sets ALTAIR_LICENSE_PATH if itisn't set, or
prepends to it if it is
units yes no no Whether license is an Altair Units license or not
(in which case it will be a feature license)
timeframe number (s|m|h) 10s Time interval between reports, or “no” for no
periodic reports
totals yes no yes Report total statistics at the end of the job. This
includes duration reports
duration-
sampling
sample number 0 If set to a positive number n, Mistral will measure
the duration of about 1/n I/O operations
limit number 0 If set to a positive number n, Mistral will limit the
number of duration measurements to n/second
wait_pid mistral first parent mistral Which process Mistral should wait for before
group parent-group exiting (see below)
vars [‘ENV_VAR"] A sequence of environment variables to report
on.
read:
enabled yes no yes Report read statistics
duration yes no no Report the duration of read operations
sized small-medium-large small- Break down read statistics by size (see below)
combined binary medium-
large
write:

Altair - Mistral User Manual 10 Version: 2025.2.0

4 CONFIGURING MISTRAL

Key Values Default Description
enabled yes no yes Report write statistics
duration yes no no Report the duration of write operations
sized small-medium-large small- Break down write statistics by size (see below)
combined binary medium-
large
seek:
enabled yes no yes Report seek statistics
metadata:
enabled combined separate combined Report statistics for metadata operations (open,
both no access, create, delete, fschange, connect and
accept). combined: aggregated statistics;
separate: separate statistics for each call type;
both: both aggregated and separate statistics.
no: do not report metadata statistics.
duration yes no no Report the duration of metadata operations
network:
enabled yes no no Report network 1/O in addition to file I/O
cpu-
memory:
enabled all job host no all Report CPU/memory usage. job: report usage
per-job; host: report usage per-host; all:
report both per-host and per-job usage; no: do
not report CPU/memory usage.
gpu:
enabled yes no no Report GPU usage
nvidia- /path/to/libnvidia-ml.so default Path to NVidia Management Library. Special
library- value “default” uses system library paths.
path
plugin:
path /path/to/file Path to plug-in executable, either absolute or
relative to <mistral_install>
interval number (s|m|h) 5s Time interval between calls to plug-in
file- yes no no Output to the log file specified by MISTRAL_LOG
output as well.
options: option: value Alist of option: value pairs representing
options to pass to the plug-in executable. See
sample etc/mistral_config.yaml for
format
switches: [“switch”] A sequence of switches to pass to the plug-in
executable.
Altair - Mistral User Manual 11 Version: 2025.2.0

4 CONFIGURING MISTRAL

4.6.1 Wait Process

This specifies which process Mistral should watch before exiting. Mistral will, by default, attempt to use informa-
tion about your environment or job-scheduler and use this to determine when it should stop monitoring your job.
However, if you are using a non-supported environment or job-scheduler, then this may cause Mistral to continue
monitoring even after the job you wish to be traced has exited.

The values for the option wait_pid override the default behaviour as follows:

» first will cause Mistral to wait for the first process to run in a job, useful for if you have a daemonised
process that starts jobs and you do not wish to wait for this.

» parent will cause Mistral to wait for the parent of the first process in a job, useful for when jobs are started
by a short-lived scheduling process, such as a terminal.

» group will cause Mistral to wait for the process group leader of the first process to run in a job, useful for
data transfer jobs where data is continuously piped through various processes.

» parent-group as above but the parent processes’ process group leader

» mistral uses default behaviour

Since Mistral monitors child processes, if the specified process has exited, Mistral will not exit until all child
processes have exited.

4.6.2 Size bins

The read.sized andwrite. sized configuration keys are used to control the reporting of read/write operations
broken down into size categories. By default, such operations are divided into “small”, “medium”, and “large”
operations, where “small” operations are up to 32 kibibytes (32 * 1024 bytes), “large” operations are over 128
mebibytes (128 * 1024 * 1024 bytes), and “medium” operations are between 32 KiB and 128 MiB. If read.sized
orwrite.sized is setto combined, all read or write operations are aggregated together. If it is setto binary
then such operations are divided into power-of-two “bins™. 0 bytes, 1 byte, 2-3 bytes, 4-7 bytes, 8-15 bytes, and
SO on.

Naturally, size bins without any operations are omitted from the report.

4.7 Miscellaneous configuration
4.7.1 Volumes

Mistral can be configured to treat an arbitrary directory as a mount point by creating a text file with a series of
absolute paths, one per line, and setting the environment variable MISTRAL_VOLUMES to point to this file.

4.7.2 Duration sampling

Duration sampling is controlled by two entries in the configuration file.

If duration-sampling.sample-factor is set to a positive number, n, Mistral will measure the duration
of an 1/0 operation with probabilty 1/n. So a value of value of 1 means that Mistral will measure the duration of all
I/O calls, while a value of 10 means that about 1 in 10 I/O calls will be measured. If set to zero Mistral will choose
a sampling factor based on how long it takes to get the current time. On many systems this overhead is low, so
Mistral can measure all durations. But on other systems it makes more sense to only measure a small fraction of
the I/O calls.

Altair - Mistral User Manual 12 Version: 2025.2.0

4 CONFIGURING MISTRAL

If duration-sampling.sample-1limit is set to a positive number then Mistral will measure the duration
of no more than that number of 1/O calls per second. If set to zero then in most cases Mistral won’t impose a limit.
If however both sample-factor and sample-1imit are set to zero, then when running on a system where it
takes more than 1 microsecond to get the current time, a limit of 1000 duration measurements per second will be
used.

On most modern systems it only takes a few tens of nanoseconds to get the current time and Mistral can easily
measure the duration of all I/O calls. Some older systems, especially some older virtual machines, can take as
much as 1 microsecond to get the current time. Measuring all durations on those machines could noticeably slow
down the job. If you set both duration-sampling.sample-factor and duration-sampling.sample-
limit to zero then Mistral will measure all the durations on a fast machine, but will reduce the number of mea-
surements on slower machines.

If you prefer to define your own parameters then setting duration-sampling.sample-factor to 10 and
duration-sampling.sample-1limit to 1000 will often give you usable data. However, setting an upper limit
on the number of measurements per second can easily distort the timing statistics, especially if the operating sys-
tem varies the CPU frequency. If you see inconsistent results, such as the 1/O time for a single threaded program
being greater than it's run time, then you should increase the sampling factor and remove any upper limit. For ex-
ample, you might set duration-sampling.sample-factor to 20 and set duration-sampling.sample-
limit to zero.

Note that Mistral estimates total duration for a call type based on the duration of the sampled operations. So
if there were 20000 read operations in a single time frame of which 1000 were sampled, Mistral would report a
value which is twenty times the sum of the measured latencies.

Duration sampling reduces run-time overhead, but some things which seem intuitively obvious will no longer
be true. Suppose you configured Mistral to report the total duration of reads, with small/medium/large size bins.
If you measure all durations the value reported for “all reads” will be equal to the sum of the duration of reads for
each of the size bins. But if duration sampling is used these numbers may not add up exactly. Each individual
value reported will be the best estimate of that duration, but the best estimate of the sum is not necessarily the
sum of the best estimates of its parts.

In older versions of Mistral duration sampling was controlled by environment variables. Those variables will
still be honoured, but non-zero values set in the config file will take priority over them.

4.7.3 Other environment variables

The following other environment variables for configuring Mistral are described elsewhere in this manual:

e MISTRAL_PLUGIN_EXIT_TIMEOUT, see Plug-ins;

* MISTRAL_CONTAINER_BIND_PATH, see Singularity and Apptainer;

* MISTRAL_NOTRACE_PROGRAMS, see Turning Mistral on and off;

» MISTRAL_BYPASS_PROGRAMS, see Bypassing specific programs with Mistral;
 MISTRAL_BYPASS_DISABLE, see Bypassing specific programs with Mistral;

* MISTRAL_PROFILE_SMALL_IO, see Summary Record;

* MISTRAL_DISABLED_SUBMITTERS see Disabling specific function wrappers with Mistral.

In addition to these, there are additional environment variable settings which may be recommended to you by
Altair Support.

Altair - Mistral User Manual 13 Version: 2025.2.0

4 CONFIGURING MISTRAL

4.7.4 LD_PRELOAD

This is not a configuration setting. Mistral uses the LD_PRELOAD variable to add itself to user processes. If you
are writing your own Mistral starter script, it must set this variable in addition to those listed above. Please consult
the docs/samples/mistral_start_reference. sh script for details.

Altair - Mistral User Manual 14 Version: 2025.2.0

5 PLUG-INS

5 Plug-ins

A plug-in is used to process log entries generated by the Mistral application. All log entries are sent to the output
plug-in.

On start up Mistral will check the configuration file for a plug-in configuration. If a plug-in configuration is
not defined Mistral will default to recording data to disk as described above. In addition if a plug-in performs an
unclean exit during a job Mistral will revert to recording data to a log file.

The docs/samples directory contains sample plug-in configuration files for several different databases.

When using a plug-in, at the end of a job Mistral will wait for a short time, by default 30 seconds, for the plug-in
to exit in order to help prevent data loss. If any plug-in process is still active at the end of this timeout, it will be
killed. The timeout can be altered by setting the environment variable MISTRAL_PLUGIN_EXIT_TIMEOUT to an
integer value between 0 and 86400 that specifies the required time in seconds.

5.1 Data rate

When setting up a plug-in it makes sense to consider the rate at which Mistral can be configured to output data. The
amount of data output is dependent on your configuration and job behaviour: jobs which access many mountpoints
will always produce more log data.

For the default Mistral configuration (small/medium/large size bins, duration metering off, metadata reported
together, no network metering), we recommend allowing for around 20 kilobytes of data per job per timeframe.
For more detailed logging (power-of-two size bins, duration metering on, separate metadata metering), we rec-
ommend allowing 200 kilobytes of data per job per timeframe.

Altair - Mistral User Manual 15 Version: 2025.2.0

6 SCHEDULER INTEGRATION

6 Scheduler Integration

This section describes how to integrate Mistral with various schedulers and workflow managers. It assumes some
familiarity with configuration and administration of your scheduler environment.

6.1 Altair PBS Professional

You should create a PBS hook script that sets the required environment variables and starts/stops Mistral. A
sample hook is provided for you to copy and edit:

<mistral_install>/docs/samples/pbs/mistral_hook.py

Note that hooks run for jobs on every queue. The sample hook is written so that it only has any effect on
gueues with names beginning “mistral”. You may want to modify this condition depending on your queue names.

Run these commands to create a hook named “mistral” and import the hook script:

$ gqmgr -c 'create hook mistral event="execjob_launch, execjob_end,execjob_epilogue"'
$ gmgr -c 'import hook mistral application/x-python default
«» /path/to/mistral_hook.py'

Note: Every time the hook script is modified, it needs to be “imported” again using the same import hook
command.

6.2 Altair Grid Engine version 2022.1 and above

Version 2022.1 and above of Altair Grid Engine includes Mistral integration. For earlier releases of Altair Grid
Engine, see the next section.

To enable Mistral for a queue, use gconf to change the execd_params configuration item. See the manual
page for sge_conf(5). The following four parameters are mandatory:

* AGE_MISTRAL_MODE:

— Set to ALWAYS to turn Mistral on for all jobs on this queue.

— Set to DEFAULT_ON for Mistral to be enabled for all jobs on the queue unless the AGE_MISTRAL
environment variable is set to @ (with qsub -v).

— Setto IF_REQUESTED for Mistral to be enabled for a job on the queue only when the AGE_MISTRAL
environment variable is set to 1 (with gsub -v).

— Set to NEVER (the default value) to prevent Mistral being enabled on the queue.

* AGE_MISTRAL_INSTALL_PATH: setto the full path of the directory where Mistral has been installed.
» AGE_MISTRAL_LICENSE_PATH: setto the full path of the license file for Mistral.

* AGE_MISTRAL_ENV: set to the full path for an environment file to be used for Mistral jobs. The file should
contain name=value settings for Mistral environment variables such as MISTRAL_CONFIG, MISTRAL_LOG,
and so on (see Configuring Mistral above for guidance on these environment variables). For a sample
environment file, see docs/samples/age-2022.1/mistral.env.

Altair - Mistral User Manual 16 Version: 2025.2.0

6 SCHEDULER INTEGRATION

This additional execd_params parameter is optional:

* AGE_MISTRAL_LD_PRELOAD: set to the full value for Grid Engine to use as LD_PRELOAD for the Mistral
library. If not set when profiling is requested, Altair Grid Engine will use a value relative to the Mistral
installation path: AGE_MISTRAL_INSTALL_PATH/dryrun/$LIB/libdryrun.so Note that this path
is the old path Mistral used to be packaged as. In order for Grid Engine to find this, please run the
compatibility-symlinks. sh script found in the sbhin folder of your Mistral install with the create
parameter. This will create symlinks to simulate the old Mistral directory structure.

Note: if Altair Breeze is also enabled for a job, then only Breeze profiling will happen.
Breeze can run upon the mistral node:

From Breeze and Mistral 2024.2.0, Breeze tracing and profiling can run along with Mistral as follows.

Directly with mistral.sh script

~/mistral_latest/bin/mistral.sh ~/breeze_latest/bin/trace-program.sh \
-f ~/trace/trace.out/ --relocate ~/trace/relocate/ \
/bin/1s

In AGE cluster

gsub -q all.q -v AGE_MISTRAL=1 -cwd -t 1-2 -b vy \
~/breeze_latest/bin/trace-program.sh \
-f ~/trace/trace.out/ --relocate ~/trace/relocate/ \
/bin/1s

Note: If the job run Breeze and Mistral together, then the durations recorded by Mistral will include the overhead
of Breeze due to the simultaneous execution of them.

6.3 Altair Grid Engine version 8.x

Older versions of Altair Grid Engine do notinclude Mistral integration. You should copy the example prolog, starter,
and epilog scripts for Altair Grid Engine:

<mistral_install>/docs/samples/age-8.x/mistral_prolog.sh
<mistral_install>/docs/samples/age-8.x/mistral_starter.sh
<mistral_install>/docs/samples/age-8.x/mistral_epilog.sh

Copy and edit the environment script, setting environment variables appropriately for your systems.
<mistral_install>/docs/samples/age-8.x/mistral_env.sh
These scripts should all be saved together in a directory accessible to all execution nodes.

Then modify your queue configurations to add prolog, starter_method and epilog settings pointing to
the scripts created above. For example if the scripts above has been saved in /apps/altair/mistral/, in
order to add it to an existing queue “mistral.q”, type the command:

$ qconf -mg mistral.q

Altair - Mistral User Manual 17 Version: 2025.2.0

6 SCHEDULER INTEGRATION

This will launch the default editor. Find the settings for prolog, starter_method and epilog, which are
typically set to NONE, and update them with paths to the new scripts. Save the configuration and exit the editor.
For example the following snippet of queue configuration shows the appropriate setting to use the files described
above.

prolog /apps/altair/mistral/mistral_prolog.sh
epilog /apps/altair/mistral/mistral_epilog.sh
starter_method /apps/altair/mistral/mistral_starter.sh

It is important to note that the starter_method will not be invoked for gsh, glogin, or grsh acting as
rlogin and as a result these jobs will not be wrapped by Mistral.

To check if the configuration has been successfully applied, the gconf command can be used with the -sq
option to show the full queue configuration which will list the configured scripts:

$ gconf -sq mistral.q

ghame mistral.q

hostlist @allhosts

prolog /apps/altair/mistral/mistral_prolog.sh
epilog /apps/altair/mistral/mistral_epilog.sh
starter_method /apps/altair/mistral/mistral_starter.sh

6.4 Altair Accelerator

You should create a special environment file called MISTRAL.start.tcl which sets all the environment variables for
the job, by copying the example file:

<mistral_install>/docs/samples/accelerator/MISTRAL.start.tcl

Edit the settings in the file to suit your installation, and then save the resulting file as MISTRAL.start.tcl
in an Accelerator environment directory.

e.g. $VOV_ENV_DIR or $VOVDIR_LOCAL/environments.

To use Mistral, submit a job with a command such as:

nc run -e SNAPSHOT+MISTRAL -- myJob

See also the Bypassing scheduler internal activity section for an example of using Mistral’s “bypass” feature
to disregard I/O caused by Accelerator’s internal programs.

6.5 Altair Flowtracer

You should create a special environment file called MISTRAL.start.tcl which sets all the environment variables for
the job, by copying the example file:

<mistral_install>/docs/samples/flowtracer/MISTRAL.start.tcl

Altair - Mistral User Manual 18 Version: 2025.2.0

6 SCHEDULER INTEGRATION

Edit the settings in the file to suit your installation, and then save the resulting file as MISTRAL.start.tcl
in a Flowtracer environment directory.

e.g. $VOV_ENV_DIR or $VOVDIR_LOCAL/environments.
To use Mistral, add +MISTRAL to the environment used for a job.

See also the Bypassing scheduler internal activity section for an example of using Mistral’s “bypass” feature
to disregard I/O caused by Flowtracer’s internal programs.

6.6 IBM Spectrum LSF

You should copy and edit the sample LSF Mistral starter script:
<mistral_install>/docs/samples/lsf/mistral_starter.sh
This script should be saved in an area accessible to all execution nodes.

For each queue that is required to automatically wrap jobs with Mistral, add a JOB_STARTER setting that re-
writes the command to launch the submitted job using the script created above. For example if the script above
has been saved in /apps/altair/mistral_starter.sh the following code defines a simple queue that will
use it to wrap all jobs with Mistral:

Begin Queue
QUEUE_NAME = mistral
PRIORITY = 30
INTERACTIVE = NO
TASKLIMIT = 5

JOB_STARTER = . /apps/altair/mistral_starter.sh; %USRCMD
DESCRIPTION = For mistral demo
End Queue

Once the job starter configuration has been added the queues must be reconfigured by running the command:
$ badmin reconfig

To check if the configuration has been successfully applied to the queue the bqueues command can be used
with the “- 1" long format option which will list any job starter configured, e.g.

$ bqueues -1 mistral

QUEUE: mistral

-- For mistral demo

PARAMETERS/STATISTICS

PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP

RSV

30 O Open:Active - - - - 000000

Interval for a host to accept two jobs is 0 seconds
TASKLIMIT

5

SCHEDULING PARAMETERS
ri5s rim ri15m ut pg io 1ls it tmp swp mem
loadsched - - - - - - - - - - -

Altair - Mistral User Manual 19 Version: 2025.2.0

6 SCHEDULER INTEGRATION

loadStop - - - - - - - - - - -

SCHEDULING POLICIES: NO_INTERACTIVE

USERS: all

HOSTS: all

JOB_STARTER: . /apps/altair/mistral_starter.sh; %USRCMD

6.7 Slurm

You should create a Slurm TaskProlog script that prints out the required environment variables and any default
settings by copying and editing the sample file:

<mistral_install>/docs/samples/slurm/mistral_prolog.sh
This script should be saved in an area accessible to all execution nodes.

If slurm is set to use cgroups, it is also necessary to create a Slurm TaskEpilog script that signals to Mistral
that the job is finished before the cgroup Kkills the task. Copy and edit the sample script:

<mistral_install>/docs/samples/slurm/mistral_epilog.sh

Configure Slurm to use the resulting TaskProlog and TaskEpilog scripts by adding the following lines in your
slurm.conf file:

TaskProlog=/path/to/mistral/taskprolog.sh
TaskEpilog=/path/to/mistral/taskepilog.sh

Each execution host requires the same settings.

Finally, instruct all Slurm daemons to re-read the configuration file:

$ scontrol reconfigure

Now all jobs submitted with sbatch, srun and salloc commands use Mistral.

Note that the sample TaskProlog and TaskEpilog scripts only run Mistral on jobs in the “mistral” partition. Modify
the scripts as necessary to suit your partition choices.

Altair - Mistral User Manual 20 Version: 2025.2.0

7 CONTAINER SUPPORT

7 Container Support

7.1 Singularity and Apptainer

Mistral will monitor workloads in Singularity and Apptainer containers by default. This will add a number of bind
paths to each singularity container, so that Mistral is able to read the configuration files and run the executables
that it normally would. If these files are all in one area of your filesystem you can minimise the number of paths
that are bound by setting the following environment variable to that path:

MISTRAL_CONTAINER_BIND_PATH

If you are writing your own Mistral starter script you may need the stand-alone program called mistral-
singularity-bind. This program examines the Mistral configuration and outputs a value which can be used
as the SINGULARITY_BIND or APPTAINER_BIND environment variable. Singularity and Apptainer mount the
directories listed in these environment variables in the container. If you use a standard starter script then setting
SINGULARITY_BIND or APPTAINER_BIND is handled automatically.

Note that Singularity by default attempts to mount both /var/tmp and /tmp to /tmp in the container. As
such, if your MISTRAL_LOG variable points to somewhere in /tmp, then any data inside the container may be
output to a different log file if you do not have a plug-in enabled. Likewise for MISTRAL_ERR_LOG should you
have error logging enabled.

In order to work around changes to Singularity from v3.6.0 onwards we assume that the first application will
be a 64-bit executable. If this is not the case then an error will be output and the executable will not be monitored.
If this causes any problems please contact support.

7.1.1 PBS

If using Singularity with the PBS_hpc_container hook, you can ensure that Mistral will work by adding the Mistral
installation directory to the mount_paths option in the configuration file.

To add this setting export the configuration file.

> container_config.json
You can then modify the container_config. json file setting e.g.
"mount_paths": ["/etc/passwd", "/etc/group", "/opt/altair/mistral"],

Then re-import the modified file:

"container_config.json"

For more information about container support in PBS please see the PBS Admin Guide.

7.2 Docker

Mistral does not currently monitor workloads in Docker containers by default — this feature is planned for a future
release.

Altair - Mistral User Manual 21 Version: 2025.2.0

8 MISTRAL HEALTHCHECK

8 Mistral Healthcheck

If you are running Mistral on a small scale, for instance to test the functionality, it can sometimes be useful to log
data to disk and then process the log file(s) that it produces.

There is a master script for doing this in the bin directory called mistral_report. sh; this creates separate
CSV files for the different data series, GNUplot graphs and a HTML report.

8.1 mistral_report.sh

This script expects the path (or paths) to Mistral log files. Optionally you can also specify an output directory with
the -o argument.

e.g.
$ bin/mistral_report.sh -o /tmp/mistral.out /tmp/jobl.mistral.log

This will generate the HTML report, CSV files and GNUPIot graphs. To omit the CSV files and GNUPIot graphs
supply the -n option.

8.2 Mistral Healthcheck reports
Whenthe bin/mistral_report.shscriptisrunitwill create the Healthcheck HTML filemistral_report.html

and output the location of the file. This is the main report file and has links to all the other data. The other data is
split by data series into different HTML files.

Altair - Mistral User Manual 22 Version: 2025.2.0

9 TURNING MISTRAL ON AND OFF

9 Turning Mistral on and off

9.1 Disabling Mistral for specific binaries

It is possible to disable Mistral monitoring for specific binaries, this is done by setting an environment variable
MISTRAL_NOTRACE_PROGRAMS. This should contain a comma separated list of the full path, directory or binary
name. If specifying a directory, ensure you use the absolute path.

When a matching binary is executed within the job, Mistral will be disabled for that binary and for any of its
children or subprocesses. Mistral will not be loaded for that program so any undesired interaction will go away.

e.g.
export MISTRAL_NOTRACE_PROGRAMS="ssh, rsh"

Will match ssh and rsh, for example /usr/bin/ssh.
export MISTRAL_NOTRACE_PROGRAMS="/bin/,/usr/bin/"

Will match locally installed binaries such as /bin/sh.
export MISTRAL_NOTRACE_PROGRAMS="/home/user/dev/project/bin/failing_binary"

Will only match the binary that is causing you problems.

By default, Mistral won’t monitor programs with any of these names: blaunch, bsub, lsgrun, lsrun,
pbsdsh, pbs_tmrsh, gsub, grsh, sbatch, srun. Thisisto preventitfrom monitoring cluster scheduling
infrastructure. You can remove a program from this list by including itin MISTRAL_NOTRACE_PROGRAMS preceded
by a - sign:

export MISTRAL_NOTRACE_PROGRAMS="-srun"
These removal entries can be combined with additions in the obvious way:
export MISTRAL_NOTRACE_PROGRAMS="-srun,failing_binary, /usr/bin/ssh, -qsub"

The setting above will turn off profiling for failing_binary,/usr/bin/ssh and any subprocesses, and it will turn on
profiling for srun and gsub.

9.2 Bypassing specific programs with Mistral

The MISTRAL_BYPASS_PROGRAMS environment variable can be used to disregard I/O which originates in a pro-
gram with the possibility or re-enabling 1/0O monitoring for sub-proceses.

If the MISTRAL_BYPASS_PROGRAMS environment variable is set to a list of programs and directories,
then any program which matches an entry in the list will be run in bypass mode. For example, MIS-
TRAL_BYPASS_PROGRAMS="emacs, /usr/local/", would ensure that emacs and any program or script
in /usr/local/, or a sub-directory such as /usr/local/bin, would run in bypass mode. For directories,
ensure that the entry is an absolute path, whereas binaries should be listed by name as shown in the example.

The MISTRAL_BYPASS_DISABLE variable can be used to turn tracing back on. It should contain the name
of another environment variable, and turns tracing on when that specified variable is set.

For example, consider the following script:

Altair - Mistral User Manual 23 Version: 2025.2.0

9 TURNING MISTRAL ON AND OFF

echo "hello world"
export TURN_TRACING_BACK_ON_PLEASE=1
1s

If Mistral is run with the following settings then I/O monitoring will be turned off for the script called
hello_world.sh so the I/O generated from the echo call will not be captured. However 1s is called with the
bypass disabling env var set TURN_TRACING_BACK_ON_PLEASE so the I/O from 1s will be captured.

export MISTRAL_BYPASS_PROGRAMS=hello_world.sh
export MISTRAL_BYPASS_DISABLE=TURN_TRACING_BACK_ON_PLEASE

9.2.1 Bypassing scheduler internal activity

This combination of MISTRAL_BYPASS_PROGAMS and MISTRAL_BYPASS_DISABLE is particularly useful for pro-
grams which are part of a scheduler or workflow management framework. It allows one to disregard I/0O performed
directly by the framework, while still monitoring I/O from user programs run by the framework. For example, Altair
Flowtracer or Accelerator programs can be disregarded, while still monitoring user jobs, with a configuration such
as this:

export MISTRAL_BYPASS_PROGRAMS=$(dirname $VOVDIR)
export MISTRAL_BYPASS_DISABLE=VOV_JOBID

With this configuration, Mistral will turn off monitoring when a program or script is called from the directory
above $VOVDIR - including Flowtracer or Accelerator programs - and it will turn back on once VOV_JOBID is set.

If setting MISTRAL_BYPASS_PROGRANMS to a hard-wired value for VOVDIR, then please ensure it is an abso-
lute path to the directory as outlined in the above section.

9.3 Disabling specific function wrappers with mistral

Sometimes it may be desirable to disable the Mistral wrapper of a C API, in particular those which are part of
a schedular’s or workflow manager’s external API for submitting jobs/tasks. For example, PBS exposes the
tm_spawn function which can be used by a submitted job to spawn child tasks. Mistral wraps this function to
trace these tasks however this can be disabled with a configuration like the below:

export MISTRAL_DISABLED_SUBMITTERS=tm_spawn

The current list of functions which can be disabled is:

tm_spawn, 1sb_launch, 1sb_submit, 1sb_submitPack.

Altair - Mistral User Manual 24 Version: 2025.2.0

10 TECHNICAL REFERENCE

10 Technical reference

10.1 Host Memory Metrics

Mistral monitors host-level memory usage metrics and records them in the Resources record. The table below
provides descriptions of these metrics, all measured in bytes.

Memory Metrics Description

memfree Free memory excluding Buffer, Cache, and SReclaimable. This is the memory that is
completely free in the system.

memavail Available memory including Buffer, Cache, and SReclaimable. This is the memory
available for new applications, because the system can reclaim cached memory.

memused Used memory, calculated as Total memory - Available memory.

These metrics are similar to that provided by the free command. However, note that different versions of
free may calculate used memory differently. Some versions use total - free - buffers - cache, while
others use total - available. Mistral follows the latter approach as it offers a more comprehensive view of
memory usage.

10.2 GPU Profiling

Mistral tracks certain metrics for NVidia, Intel data center and AMD GPU devices and will output these if configured
to do so. It does this by calling the relevant functions from the vendor’s libraries to query GPU state. Note that
not every GPU device supports every type of query exposed by the libraries, and so in Mistral these numbers will
always be output as zero (or missing from the report.) For the complete reference, with supported features, see
the offical guides for each vendor:

Vendor C Library Official guide

NVidia NVidia Management Library NVML Reference Guide
“NVML”

Intel XPU Management “XPUM” XPUM Reference Guide

AMD AMD System Management AMD SMI Reference Guide
Interface Library “AMD-SMI”

AMD ROCm System Management ROCm SMI Reference Guide

Interface Library “ROCm SMI”

Note that both AMD SMI and ROCm SMI are supported by Mistral, and if both are installed, then AMD SMI
will be used.

The below table details the metrics queried by Mistral and the name each vendor gives to each, as well as a
brief description.

Description of Mistral

Mistral NVidia Intel AMD Metric
energy energy energy energy Energy used by the GPU
since last report.
read PCle receive PCle read Unsupported in Bytes read by the GPU
throughput throughput Mistral* since last report.

Altair - Mistral User Manual 25 Version: 2025.2.0

https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group__nvmlDeviceQueries
https://intel.github.io/xpumanager/smidoc/rst/index.html
https://rocm.docs.amd.com/projects/amdsmi/en/latest/index.html
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/index.html

10 TECHNICAL REFERENCE

Description of Mistral

Mistral NVidia Intel AMD Metric
write PCle transmit PCle write Unsupported in Bytes written by the GPU
throughput throughput Mistral* since last report.

utilisation ~ sm_utilization GPU utilization GPU activity Percentage of time in
which the GPU was used.

mem memory memory used memory used Virtual Memory size for
the GPU.

temperature temperature GPU temperature GPU hotspot Temperature reported by

temperature the GPU.

* Because of how AMD SMI and ROCm SMI retrieve these numbers, they are unsuitable for use in Mistral,
taking more than one second per library call.

10.3 Log entries

If Mistral detects 1/O on a mountpoint (or cpu/memory or GPU usage, if configured), it outputs log entries, either
to the MISTRAL_LOG file or to a plug-in (see the Plug-ins section).

Mistral logs 1/0 on most file systems, but ignores a small number of specialised file system types, for example
devpts which is used to implement pseudo terminals. The full list of ignored file system types is:

anon_inodefs, bdev, binfmt_misc, bpf, cgroup, cgroup2, configfs, cpuset, debugfs,
devfs, devpts, dlmfs, efivarfs, fuse, fuse.archivemount, fuse.dumpfs, fuse.encfs,
fuse.gvfs-fuse-daemon, fuse.gvfsd-fuse, fuse.rofiles-fuse, fuse.xwmfs, fusectl
hugetlbfs, mqueue, nfsd, none, nsfs, pipefs, pstore, ramfs, rpc_pipefs, securityfs,
selinuxfs, sockfs, spufs, usbfs

I/0 on anonymous inodes is also ignored.

Log entries to the MISTRAL_LOG file are in JSON format, and has different formats based on the data out-
putted:

"version": version,
"timestamp": timestamp,
"hostname": hostname,
"jobid": job_id,
"jobgroupid": job_group_id,
"type": data_type,
"jobtotal": true/false,
"environment": {

"ENV": var
}
"jobrealtime": real_time,
"jobstarttime": start_time,
"jobendtime": end_time,
variable: data_object,

Altair - Mistral User Manual 26 Version: 2025.2.0

10 TECHNICAL REFERENCE

Note that the specific fields that are included in the output depends upon your mistral configuration. The field
definitions are as follows:

versionisthe current JSON-schema version number. The full schemadocumentisindocs/mistral_schema. json.

timestamp is the end of the time frame when the I/O occurred. The time-stamp is in ISO 8601 format with
second precision and UTC offset (YYYY-MM-DDThh:mm: ss+hhmm).

hostname is the name of the host on which the job was running. The host name includes the domain name.
jobid is the job identifier for the job.
jobgroupid is the job group identifier for the job group.

type is the type of record and may be either mountpoint, network, resources, gpu, mountpointsum-
mary or jobsummary.

total is a boolean value of whether the entry represents the total measurement for the whole job or not.

environment is a list of variable-value key-pairs for the environment variables requested in the config file. It
is omitted if none were requested. The value will be an empty string if either the variable is not set or is set but is
equal to the empty string.

jobrealtime is only included when jobtotal is true and is the wall clock real time of the job in microsec-
onds.

jobstarttime is only included when jobtotal is true and is the milliseconds since epoch of when the
job began.

jobendtime is only included when jobtotal is true and is the milliseconds since epoch of when the job
ended.

variable are properties with a label that will depend on the type of record, as does its values data_object.
These are described in the sections below.

10.3.1 Mountpoint Record

There are three variable properties for a record whose type is mountpoint, each with the following formats:

"timeframe": timeframe,
"cumulative": true/false,

llioll : {
"mountpoint": {
"path": path,

"fstype": fstype,
"fsname": fs_name,
"fshost": fs_host
+
calltype: {
measurement: {
"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second,
"mean/call": mean_per_call,

Altair - Mistral User Manual 27 Version: 2025.2.0

10 TECHNICAL REFERENCE

"max/call": max_per_call

timeframe is the length of the timeframe in seconds.
cumulative is a boolean field indicating if the record is for all mount points or not.
mountpoint is an identifier for the mount point that the record is about.

path is the I/O mount point reported by this log entry. The value invalid represents an attempt to do I/O on
a closed file descriptor. (Note that this is not the same as /invalid, which is what would appear if the system
has a file system mounted on a directory called /invalid.) A value of ™" represents the total across all mount
points, including those reported as invalid.

fstype is the filesystem type of path, or ™" if this entry is the total across all mount points. If pathis invalid
then fstype will also be invalid.

fsname is the so-called filesystem “name” of path, typically a device name or an NFS HOST : PATH specifica-
tion, or "*” if this entry is the total across all mount points.

fshost is the host name part of fsname if present, or ™" if this entry is the total across all mount points.

calltype is a textual label made up of 2 parts, separated by an underscore. The first is one of the call types
read, write, open, access, create, delete, fschange, mmap, seek, connect, accept; ormetadata (for
the total of the call types other than read, write and seek). The second part is the size-range and is described
below.

The size-range is <MIN>-<MAX> for size-binned read/write data, where <MIN> and <MAX> are the lower and
upper operation sizes for the bin being reported, and are both powers of two. Note that the range is exclusive
of <MAX>, so that (for instance) if the size range is 0-32KiB (as for small/medium/large size binning), then it
will include operations up to and including 32,767 bytes, but operations of exactly 32 kibibytes will instead be
reported under 32KiB-128MiB. For entries without a size range (such as entries for seek or metadata functions,
or resource entries), this appears as ‘all.

When read.sized orwrite.sized is setto all, the value of <MAX> is always double the value of <MIN>,
except for the first bin which is reserved for reads or writes of exactly zero bytes, and has a <SIZE-RANGE> of
0-1B. The second bin has a <SIZE-RANGE> of 1B-2B, so includes single-byte operations only.

Both <MIN> and <MAX> are expressed using the IEC standard prefixes such as “KiB” for “kibibyte” (1024
bytes), “MiB” for “mebibyte” (1,048,576 bytes), and so on.

measurement is a textual label describing the category what was measured. It changes per measurement
and may be one of the following:

bytes This entry reports data for the number of bytes read or written by the
stated call type in the stated operation size range on the stated mount
point in the timeframe.

calls This entry reports data for the number of calls of the stated call type
with the given operation size range on the stated mount point in the
timeframe.

duration This entry reports data for the duration sampled of stated call type with
the given operation size range on the stated mount point in the
timeframe.

Altair - Mistral User Manual 28 Version: 2025.2.0

10 TECHNICAL REFERENCE

Each of these measurements report on the following:

total The total value measured in the timeframe.

min/s The minimum rate measured, grouping measurements on a per second

basis for the timeframe.

mean/s The mean rate measured, grouping measurements on a per second

basis for the timeframe.

median/s The median rate measured, grouping measurements on a per second

basis for the timeframe.
max/s The maximum rate measured, grouping measurements on a per
second basis for the timeframe.

In addition, duration reports two extra calculations:

mean/call The mean duration measured per call.
max/call The maximum duration for a single call.

An example mountpoint record looks like...

"version": "3.1.2",
"timestamp": "2023-09-19T13:38:20+01:00",
"hostname": "suffix",

"jobid": "1283.pbs",
"jobgroupid": "1283.pbs",
"timeframe": "11s",
"type": "mountpoint",
"jobtotal": false,
"mountpoint": {
"path": "/", "fstype": "ext4", "fsname": "/dev/sda3", "fshost": ""

+
"io": {
"read_all": {
"bytes": {
"total": 4215903517, "mean/s'": 383263956, "median/s": 540497920,
"max/s": 1151559680
I
"calls": {
"total": 514540, "mean/s": 46776, "median/s": 53606, "max/s": 112457
3
"duration": {
"total": 722806, "mean/s": 65709, "min/s": 0, "median/s": 82341,
"max/s": 181955, "mean/call": 1, "max/call": 265
}
+
"read_0-32KiB": {
"bytes": {

"total": 4215903517, "mean/s'": 383263956, "median/s": 540497920,
"max/s": 1151559680

Altair - Mistral User Manual 29 Version: 2025.2.0

10 TECHNICAL REFERENCE

3
"calls": {

"total":
I
"duration":
"total":
"max/s":
}
i

"write_all":
"bytes": {
"total":
"max/s":
3
"calls": {
"total":
I
"duration":
"total":
"max/s":

}

+
"write_0-32Ki

"bytes": {
"total":
"max/s":

i

"calls": {
"total":

I

"duration":
"total":
"max/s":

}

i

"metadata":

"calls": {
"total":
"max/s":

I

"duration":
"total":
"max/s":

}

3

"seek": {
"calls": {

{

}
iy

"environment":

514540, "mean/s": 46776, "median/s": 53606, "max/s": 112457
{

722806, "mean/s": 65709, "min/s": 0, "median/s": 82341,

181955, "mean/call": 1, "max/call": 265

{

4002301619, "mean/s": 363845601, "median/s'": 504375934,

1142160760

492584, "mean/s": 44780, "median/s": 68162, "max/s": 119113
{

2683727, "mean/s": 243975, "min/s": 0, "median/s": 356555,

658933, "mean/call": 5, "max/call": 132

B": {

4002301619, "mean/s": 363845601, "median/s'": 504375934,

1142160760

492584, "mean/s": 44780, "median/s'": 68162, "max/s'": 119113
{

2683727, "mean/s": 243975, "min/s": 0, "median/s": 356555,

658933, "mean/call": 5, "max/call": 132

436024, "min/s": 17219, "mean/s": 39638, "median/s": 38539,

58592
{

4775038, "mean/s": 434094, "min/s": 141090, "median/s": 504035,

702112, "mean/call": 11, "max/call": 4905

"total": 5, "max/s": 4 }

{ "SHELL": "/bin/bash", "USER": "useri1" }

Altair - Mistral User Manual

30 Version: 2025.2.0

10 TECHNICAL REFERENCE

10.3.2 Network Record

This type of record is disabled by default and can be turned on by enabling network in your Mistral config. There
are three variable properties for this record with following formats:

"timeframe": timeframe,
"cumulative": true/false,
"io": {
"address": address
calltype: {
measurement: {
"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second,
"mean/call": mean_per_call,
"max/call": max_per_call

address is a string representation of an IP address and is an identifier for the record.

calltype, timeframe and cumulative are analogous to the above description for the mountpoint
record.

An example network record looks like...

{
"version": "3.1.2",
"timestamp": "2023-09-19T13:38:27+01:00",
"hostname": "suffix",

"jobid": "1283.phs",
"jobgroupid": "1283.pbs",
"timeframe": "19s",
"type": "network",
"jobtotal": false,
"address": "104.16.212.134",
"io": {
"read_all": {
"bytes": { "total": 549, "mean/s": 28, "max/s'": 549 },
"calls": { "total": 1, "max/s": 1 },
"duration": {
"total": 4, "mean/s": 0, "min/s": 0, "median/s": 0O,
"max/s": 4, "mean/call": 4, "max/call": 4
}
3

Altair - Mistral User Manual 31 Version: 2025.2.0

10 TECHNICAL REFERENCE

"read_0-32KiB": {
"bytes": { "total": 549, "mean/s": 28, "max/s": 549 },
"calls": { "total": 1, "max/s": 1 },
"duration": {
"total": 4, "mean/s": 0, "min/s": 0, "median/s": 0O,
"max/s": 4, "mean/call": 4, "max/call": 4
}
3
"write_all": {
"bytes": { "total": 74, "mean/s": 3, "max/s": 74 1},
"calls": { "total": 1, "max/s": 1 },
"duration": {
"total": 27, "mean/s": 1, "min/s": 0, "median/s": 0O,
"max/s": 27, "mean/call": 27, "max/call": 27
}
s
"write_0-32KiB": {
"bytes": { "total": 74, "mean/s": 3, "max/s": 74 1},
"calls": { "total": 1, "max/s": 1 },
"duration": {
"total": 27, "mean/s": 1, "min/s": 0, "median/s": 0,
"max/s": 27, "mean/call": 27, "max/call": 27
}
3
"metadata": {
"calls": { "total": 1, "max/s": 1 },
"duration": {
"total": 410409, "mean/s": 21600, "min/s": 0, "median/s": 0,
"max/s": 410409, "mean/call": 410409, "max/call": 410409

}

3
"environment": { "SHELL": "/bin/bash", "USER": "user1" }

10.3.3 Resources Record

The single variable property of a record whose type is resources takes on the label resources. ltis
disabled by default but can be output by enabling cpu/memory in your Mistral config. The resources property
has the following format:

"timeframe": timeframe,
"resources": {
"host": {
"cpuusertime": {

"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second

Altair - Mistral User Manual 32 Version: 2025.2.0

10 TECHNICAL REFERENCE

s

"cpusystemtime": {
"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second

3

"iowait": {
"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second

i

"memused": {
"min": minimum_memused,
"max": maximum_memused,
"mean/s": mean_memused_per_second

+

"memfree": {
"min": minimum_memfree,
"max": maximum_memfree,
"mean/s": mean_memfree_per_second

+

"memavail": {
"min": minimum_memavail,
"max": maximum_memavail,
"mean/s": mean_memavail_per_second

}

+
"job": {

"cpuusertime": {
"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second

s

"cpusystemtime": {
"total": total_count,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second

+

"rssmem": {
"max": maximum_rssmemory,
"mean/s": mean_rssmemory_per_second

iy

Altair - Mistral User Manual 33 Version: 2025.2.0

10 TECHNICAL REFERENCE

"vmem": {
"max": maximum_virtual_memory,
"mean/s": mean_virtual_memory_per_second
3
}

timeframe is as above with mountpoint and network records.

host is a collection of the resource usage for the current host. Each measurement reports the same as with

I/0O data: a total and various rates described above.

cpuusertime is the amount of time that the job has been scheduled in user mode on the reported host,

measured in micro-seconds.

cpusystemtime is the amount of time that the job has been scheduled in kernel mode on the reported host,

measured in micro-seconds.

iowait is the amount of time that the host has spent waiting for an I/O task related to the job to complete.

job is similar to host and is a collection of the resource usage for the entire job. The entries cpuusertime

and cpusystemtime are as above but with respect to the entire job.

rssmem shows the size of real memory the job used, in bytes, and the mean size when sampled every second.

vmenm is the maximum size of virtual memory that the job used, in bytes, and the mean size when sampled

every second.

An example resources record looks like...

{
"version": "3.1.2",
"timestamp": "2023-09-19T713:38:27+01:00",
"hostname": "suffix",
"jobid": "1283.phs",
"jobgroupid": "1283.pbs",
"timeframe": "8s",
"type": "resources",
"jobtotal": false,
"resources": {
"host": {
"cpuusertime": {
"total": 1420000, "min/s": 170000, "mean/s": 202857,
"median/s": 210000, "max/s": 230000
3
"cpusystemtime": {
"total": 8030000, "min/s": 1030000, "mean/s": 1147142,
"median/s": 1150000, "max/s": 1280000
3
"cputotaltime": {
"total": 9450000, "min/s": 1250000, "mean/s": 1350000,
"median/s": 1360000, "max/s": 1450000
3
"iowait": {
"total": 4210000, "min/s": 290000, "mean/s": 601428,
Altair - Mistral User Manual 34 Version: 2025.2.0

10 TECHNICAL REFERENCE

"median/s": 620000, "max/s": 790000

}
I
"job": {
"cpuusertime": {
"total": 1340000, "min/s": 10000, "mean/s": 167500,
"median/s": 185000, "max/s": 210000
I
"cpusystemtime": {
"total": 5670000, "min/s": 10000, "mean/s": 708750,
"median/s": 800000, "max/s": 840000
I
"cputotaltime": {
"total": 7010000, "min/s": 20000, "mean/s": 876250,
"median/s": 1000000, "max/s": 1010000
3
"cpus": { "total": 7, "mean/s": 1, "median/s": 1, "max/s": 1 },
"rssmem": { "max": 12058624, "mean/s": 5980160 },
"vmem": { "max": 102293504, "mean/s": 22807552 }
}

3
"environment": { "SHELL": "/bin/bash", "USER": "user1" }

10.3.4 GPU Record

The three variable properties of a record whose type is gpu are name, cumulative and usage: these
refer to the path to the device id; whether representing all GPUs or not; and usage values of a particular GPU,
respectively. This is disabled by default but has the following format:

"timeframe": timeframe
"gpu": path,
"cumulative": true/false
"usage": {
"energy": {
"total": total_energy,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second
+
"read": {
"total": total_bytes_read,
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second
+
"write": {
"total": total_bytes_written,

Altair - Mistral User Manual 35 Version: 2025.2.0

10 TECHNICAL REFERENCE

"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second
+
"utilisation": {
"min/s": minimum_per_second,
"mean/s": mean_per_second,
"median/s": median_per_second,
"max/s": maximum_per_second
+
"temperature": {
"max": maximum_temperature
"mean/s": mean_temperature_per_second,
+
"mem": {
"max": maximum_memory
"mean/s": mean_memory_per_second,

timeframe is as above with resources, mountpoint and network records.

cumulative is analogous with mountpoint and network records but across GPU devices.
gpu is the path to the device or " *" when cumulative is true.

usage is the collection of metrics that are reported for the GPU.

energy shows the total energy consumed, in joules, as well as rates.

read is the number of bytes read from the PClI-e bus by the GPU.

write is the number of bytes transmitted to the PIC-e bus by the GPU.

utilisation is the amount of time the GPU was being used by some process, as a percentage. Note
that this does not represent the saturation of the GPU i.e. not considering the capacity of the GPU, but rather a
frequency of use.

temperature shows the maximum temperature the GPU reached, in degrees Celsius, as well as the mean
temperature since the last report.

mem shows the maximum memory used by the GPU, in bytes, as well as mean use when sampled every
second.

An example of a GPU record is as below...

{
"version": "3.2.5",
"timestamp": "2024-09-10T15:45:20+02:00",
"hostname": "suffix",

"jobid": "1283.pbs",
"jobgroupid": "1283.pbs",
"timeframe": "8s",
lltypell: llgpulll
"jobtotal": false,

Altair - Mistral User Manual 36 Version: 2025.2.0

10 TECHNICAL REFERENCE

"gpu": "/dev/nvidia®",

"usage": {
"energy": {
"total": 1108.0, "min/s": 4.0, "mean/s": 110.0, "median/s": 126.0, "max/s":
o 127.0
s
"read": {
"total": 3072.0, "mean/s": 307.0, "max/s": 2048.0
},"write": {
"total": 3072.0, "mean/s": 307.0, "max/s'": 2048.0
s
"utilisation": {
"mean/s": 89.0, "median/s": 99.0, "max/s": 99.0
3
"mem": {
"max": 1321855877.0, "mean/s'": 1231823044.0
s
"temperature": {
"max": 49.0, "mean/s": 42.0
}
+
"environment": { "SHELL": "/bin/bash", "USER": "user1" }

10.3.5 Job Summary Record

The variable property of a record whose type is jobsummary takes on the label iosummary. This type of
record is disabled by default and can be enabled by turning on totals in your Mistral config file. It is a collection
of aggregated statistics about the type of 1/0 that was performed. This has been split into three categories: good
(green), medium (yellow) and bad (red). The iosummary property has the following format:

"iosummary": {
"total": {
"accumulatedruntime": run_time,
"accumulatediotime": io_time,
"iotimepercentage": io_time_percentage ,

"calls": io_calls
+
"red": {
"time": {
"iotime": total_red_time,
"iopercentage": percentage_red_time
s
"calls": {
"iocount": total_red_calls,
"iopercentage": percentage_red_calls
}
+
"yellow": {
"time": {

Altair - Mistral User Manual 37

Version: 2025.2.0

10 TECHNICAL REFERENCE

"iotime": total_yellow_time,
"iopercentage": percentage_yellow_time

3
"calls": {
"iocount": total_yellow_calls,
"iopercentage": percentage_yellow_calls
}
+
"green": {
"time": {
"iotime": total_green_time,
"iopercentage": percentage_green_time
+
"calls": {
"iocount": total_green_calls,
"iopercentage": percentage_green_calls
}
}

total gives a basic overview of the entire job.

accumulatedruntime is the sum of each process’ run time (wall-clock time), in microseconds. This may be
higher than the jobrealtime for jobs with multiple processes running in parallel.

accumulatediotime is the sum of time each process spent in I/O operations, in microseconds.

iotimepercentage isthe percentage of time spentin I/O operations, calculated from accumulatediotime
and jobrealtime.

calls is the total number of 1/O calls made.

red, yellow and green represent categories of I/O done, each of which is defined and explained below. In
each category, the following is reported:

time reports the time (1otime) spent doing that category of I/O and the percentage (iopercentage) of I/O
time in said category.

calls reports the number of calls (iocount) made that fall in to the category definition and the percentage
(iopercentage) of I/O calls in that category too.

The following is an example of a job summary

{
"version": "3.1.2",
"timestamp": '"2023-09-19T14:48:01+01:00",
"hostname": "suffix",

"jobid": "1283.pbs",

"jobgroupid": "1283.pbs",

"type": "jobsummary",

"jobtotal": true,

"iosummary": {

"total": {

"accumulatedruntime": 38341377,
"accumulatediotime": 14886960,

Altair - Mistral User Manual 38 Version: 2025.2.0

10 TECHNICAL REFERENCE

"iotimepercentage": 75.4415180210036,
"calls": 2623116
3
"red": {
"time": { "iotime": 9427079, "iopercentage": 63.324406057381765 },
"calls": { "iocount": 1977438, "iopercentage": 75.3850763748153 }
3
"yellow": {
"time": { "iotime": 2685358, "iopercentage": 18.038323472354328 },
"calls": { "iocount": 206474, "iopercentage": 7.871325553273283 }
3
"green": {
"time": { "iotime": 2774523, "iopercentage": 18.637270470263907 },
"calls": { "iocount": 439204, "iopercentage": 16.74359807191142 }
}
+
"environment": { "SHELL": "/bin/bash", "USER": "user1" },
"jobrealtime": 19733329,
"jobstarttime": 16951336815,
"jobendtime": 16951356548

10.3.5.1 How red, yellow and green percentages are calculated

Each I/O call has a duration measured in microseconds. Once the call is categorised under bad, medium or
good I/0, we accumulate the call duration to get the time spent in red, yellow and green 1/O operations. In addition
we need to measure the total time the application spent doing 1/0. The percentages are then simply calculated
as:

* % Red time = (Time spent in bad I/O ops) / (Total time spent in /O ops)
* % Yellow time = (Time spent in medium 1/O ops) / (Total time spent in I/O ops)

* % Green time = (Time spent in good I/O ops) / (Total time spent in 1/O ops)

For more information on how the durations are measured, see the Duration sampling section. Note that
regardless of the duration settings in your Mistral config file for each individual call type, if totals is turned on,
which it is by default, duration sampling will occur. As a result, turning off totals is likely to reduce the overhead
of running Mistral.

Additionally, the duration measurements are not reported by Mistral if there were not enough measurements.
This is to prevent scenarios whereby short jobs can have vastly overreported I/O time spent in any particular cat-
egory. The minimum number of samples required is equal to the MISTRAL_MONITOR_DURATION_SAMPLE envi-
ronmentvariable. Ifthisis n, then atleast n calls will have to have been sampled. fMISTRAL_MONITOR_DURATION_SAMPLE
isn’t set, then the default value of 10 will be used.

We don't calculate the percentages against the total wallclock runtime, because the application spends time
also doing CPU intensive tasks, memory |/O, synchronization (locks), sleeping, etc.

In similar fashion, we calculate the percentages using call counts:

* % Red calls = (Number of bad I/O calls) / (Total I/O calls)

Altair - Mistral User Manual 39 Version: 2025.2.0

10 TECHNICAL REFERENCE

* % Yellow calls = (Number of medium I/O calls) / (Total 1/O calls)

* % Green calls = (Number of good /O calls) / (Total I/O calls)

We log the total time spent in I/O ops, which is:

« Total time spent in I/0 ops = Red time + Yellow time + Green time and similarly for total number of I/O calls:

» Total number of I/O calls = Red calls + Yellow calls + Green calls

We also log how much of the total running time was spent in I/O:

* % I/O Time = (Total time spent in 1/O ops) / (Total accumulated runtime of processes)

For multi-threaded processes, the times and call counts are accumulated from each thread. Therefore the
total time spent in /O may be greater than the total wallclock runtime, and equally % I/O Time may be greater
than 100%.

10.3.5.2 Rules for bad 1/0

Definition of bad 1/O:

Small reads or writes.

Opens for files where nothing was written or read.

Stats that succeeded on files that were not used.

Failed 1/0O.

Backward seeks.

» Zero seeks, reads, writes.

Failed network 1/O.

10.3.5.3 Rules for medium 1/O

Definition of medium I/O:

» Opens for files from which less than N bytes were read or written.
» Stats of files that were used later.
» Forward seeks.

» Sync calls including sync, fsync, fdatasync, sync_file_range and syncfs. (Note that calls to
fflush on a file opened for writing are treated as writes, and classified as good or bad depending on
the amount of data actually written.)

Altair - Mistral User Manual 40 Version: 2025.2.0

10 TECHNICAL REFERENCE

10.3.5.4 Rules for good 1/O

Definition of good 1/O:

* Reads and writes greater than MISTRAL_PROFILE_SMALL_IO

Opens for files from which at least MISTRAL_PROFILE_SMALL_IO bytes were read or written.

Successful closes

Successful network 1/O.

10.3.6 Mount Point Summary Record

A mount point summary record is similar to a job summary but relates to 1/0 on a single mount point. The type
property will be mountpointsummary and it includes a mountpoint property which identifies the mount point
in question.

The following is an example of a mount point summary.

{
"version": "3.1.2",
"timestamp": "2023-09-19T14:48:01+01:00",
"hostname": "suffix",
"jobid": "1283.phs",
"jobgroupid": "1283.pbs",
"type": "mountpointsummary",
"jobtotal": true,
"mountpoint": {
"path": "/",
"fstype": "ext4",
"fsname": "/dev/sda3",
"fshost": ""
+
"iosummary": {
"total": {

"accumulatediotime": 14840348,
"iotimepercentage": 75.2053059241084,
"calls": 2623097

3
llredll: {
"time": { "iotime": 9427071, "iopercentage": 63.523247568048944 1},
"calls": { "iocount": 1977436, "iopercentage": 75.38554616928005 }
3
"yellow": {
"time": { "iotime": 2685354, "iopercentage": 18.094953029403353 1},
"calls": { "iocount": 206469, "iopercentage": 7.871191953633434 }
3
"green": {

"time": { "iotime": 2727923, "iopercentage": 18.381799402547703 },
"calls": { "iocount": 439192, "iopercentage": 16.743261877086514 }

Altair - Mistral User Manual 41 Version: 2025.2.0

10 TECHNICAL REFERENCE

}
3
"environment": { "SHELL": "/bin/bash", "USER": "useri" },
"jobrealtime": 19733329,
"jobstarttime": 16951336815,
"jobendtime": 16951356548

Altair - Mistral User Manual 42 Version: 2025.2.0

	Introduction
	Overview
	Download
	Tar file
	Debian package
	RPM package

	Licensing
	Data pipeline
	Configuration
	Scheduler integration

	Monitoring an application
	Configuring Mistral
	License
	Log locations
	Plug-in configuration
	Working directory location
	Error log
	Configuration file
	Wait Process
	Size bins

	Miscellaneous configuration
	Volumes
	Duration sampling
	Other environment variables
	LD_PRELOAD

	Plug-ins
	Data rate

	Scheduler Integration
	Altair PBS Professional
	Altair Grid Engine version 2022.1 and above
	Altair Grid Engine version 8.x
	Altair Accelerator
	Altair Flowtracer
	IBM Spectrum LSF
	Slurm

	Container Support
	Singularity and Apptainer
	PBS

	Docker

	Mistral Healthcheck
	mistral_report.sh
	Mistral Healthcheck reports

	Turning Mistral on and off
	Disabling Mistral for specific binaries
	Bypassing specific programs with Mistral
	Bypassing scheduler internal activity

	Disabling specific function wrappers with mistral

	Technical reference
	Host Memory Metrics
	GPU Profiling
	Log entries
	Mountpoint Record
	Network Record
	Resources Record
	GPU Record
	Job Summary Record
	Mount Point Summary Record

