

Siemens Digital Industries Software

All rights reserved. No parts of this work may be reproduced in any form or by any means–graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems–without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may ac company it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Unpublished work Copyright 2022 Siemens

Contents

1	Intro	oductio	n	1
2	Rele	ease No	otes	2
	2.1	MF-Ty	re/MF-Swift generic	2
		2.1.1	Enveloping runtime performance improvement	2
		2.1.2	New Siemens Licensing mechanism for MF-Tyre/MF-Swift	2
		2.1.3	Contact patch transient response improvement	2
		2.1.4	Curvature support with OpenCRG files	3
		2.1.5	Real-Time Platform Support	3
		2.1.6	Bug fixes	3
3	Lice	ense Ma	anual	4
	3.1	Obtair	ning a License	4
	3.2	Licens	e Types and Features	5
	3.3	Licens	e protection on desktop platforms	6
		3.3.1	Starting the License Server Manager on Windows and LINUX Platforms	7
	3.4	Licens	e protection on RT platforms	8
		3.4.1	Obtain the serial number(s) for dSPACE platforms	8
		3.4.2	Obtain the serial number(s) for Concurrent iHawk and IPG Xpack4 platforms $\ . \ .$	9
		3.4.3	Obtain the serial number(s) for NI-PXI platforms	9
		3.4.4	Set up Licensing for Simulink	10
	3.5	Licens	e Troubleshooting Guide	10
		3.5.1	Windows License Troubleshooting	10
		3.5.2	Real Time License Troubleshooting	10
4	Use	r Manu	al	11
	4.1	Introdu	uction	11
		4.1.1	MF-Tyre/MF-Swift	12
		4.1.2	Model Usage and computational performance	14

	4.1.3	Conventions	15
	4.1.4	Technical Support Details	16
4.2	Tire M	lodel Operating Modes	16
	4.2.1	Road method	17
	4.2.2	Tire side	17
	4.2.3	Contact method	18
	4.2.4	Dynamics method	20
	4.2.5	Slip Forces method	20
	4.2.6	Definition of the ISWITCH parameter	21
	4.2.7	Temperature mode	21
4.3	Tire P	roperty File	23
	4.3.1	Obfuscated Tire Property Files	23
	4.3.2	Overview	24
	4.3.3	Reduced Input Data Requirements	24
	4.3.4	Input limitations	25
	4.3.5	Scaling Factors	26
	4.3.6	Parameters In The Tire Property File	26
	4.3.7	Version History	36
4.4	Road	Surface Definition	37
	4.4.1	Default Flat Road	37
	4.4.2	OpenCRG Road	38
	4.4.3	External Road	39
	4.4.4	Road model numerical limitations	39
4.5	Tire M	lodel Output	40
	4.5.1	Feedback to Simulation Package	40
	4.5.2	Post Processing Signals	40

1 Introduction

Simcenter Tire is the Siemens branding for the former TNO/TASS Delft-Tyre portfolio containing tire modeling software and services. Simcenter Tire enables engineers to precisely and efficiently model the highly non-linear tire performance throughout vehicle dynamic simulations. This allows analysis of the vehicle behavior earlier in the development cycle, reducing development time and costs. Simcenter Tire includes the MF-Tyre/MF-Swift tire model, the MF-Tool tire model parameterization tool and tire testing and engineering services. By combining those elements, customized tire modeling methodologies can be delivered that provide the optimal balance between simulation accuracy and cost-efficiency.

This manual belongs to the Simcenter Tire MF-Tyre/MF-Swift product. Based on the renowned Magic Formula and tire modeling theory developed by prof. Pacejka, MF-Tyre/MF-Swift has a range of methods to model tire behavior for vehicle dynamic simulations. MF-Tyre/MF-Swift provides an integral, cost efficient and fast tire modeling for all simulation applications.

MF-Tyre/MF-Swift is a plug-in to a number of Vehicle Simulation Packages capable of representing the (dynamic) tire behavior. MF-Tyre/MF-Swift supports usage for both desktop application as well as on Real-Time systems. The two types of applications require different licensing strategies. Both are described in the section License manual.

MF-Tyre/MF-Swift 2212 supports the following real-time systems:

- 1. dSPACE DS1006,
- 2. dSPACE SCALEXIO,
- 3. Concurrent iHawk,
- 4. IPG Xpack4, and
- 5. NI PXI Phar Lap ETS.

The usage of the tire model is described in the User manual.

2 Release Notes

On September 1, 2017 Siemens has acquired TASS International, a global provider of automotive simulation software and engineering and test services. Under the umbrella of Siemens Digital Industries the MF-Tyre/MF-Swift product will be further developed in order to provide the most versatile and cost-efficient tire modeling product in the market. This document describes the contents of the current release; MF-Tyre/MF-Swift 2212.

MF-Tyre/MF-Swift 6.2 has been the default product for desktop simulations. A complete MF-Tyre/MF-Swift product renewal was initiated by TASS International in 2015, with a specific focus on Real-Time simulations. With MF-Tyre/MF-Swift version 2020.1 Siemens releases a product that can replace version 6.2 as well as support Real-Time simulations. This allows standardization to one single MF-Tyre/MF-Swift version throughout all simulation environments.

In this chapter the release notes of MF-Tyre/MF-Swift 2212 are presented. Section 2.1 contains the latest generic MF-Tyre/MF-Swift information which applies for usage in combination with all vehicle simulation packages.

2.1 MF-Tyre/MF-Swift generic

2.1.1 Enveloping runtime performance improvement

The Enveloping usemode's runtime performance has been improved for MF-Tyre/MF-Swift 2212, to ensure more complex full vehicle simulations capability on Real-time platforms. Kindly refer to the Introduction section for additional details.

2.1.2 New Siemens Licensing mechanism for MF-Tyre/MF-Swift

The licensing mechanism for Simcenter Tire MF-Tyre/MF-Swift 2212 is the Siemens License Server. The Siemens License Server uses a new vendor DEAMON called SALT, instead of MADLIC. Therefore, the versions of MF-Tyre/MF-Swift older than 2022.1 are not compatible with the Siemens License Server and will still use the previous mechanism for licensing. Refer to the user manuals of the respective version regarding Licensing.

The Siemens License Server is part of the MF-Tyre/MF-Swift 2212 installer and will require a new license file. Kindly contat our Siemens Digital Industries sales representative and/or our channel partners for further information.

2.1.3 Contact patch transient response improvement

The transient response of the contact patch, as a part of the non-linear transient mode (see section 4.2.4), is modeled by its relaxation length. This approach improves the accuracy of the tire dynamic

response, with the non-linear transient mode, in conditions of high levels of slip such as ABS braking.

2.1.4 Curvature support with OpenCRG files

MF-Tyre/MF-Swift 2212 supports road curvature with OpenCRG road files. The road curvature can be set, in the OpenCRG road file, by using the keyword CURVTRSF in the header section, as a comment. For example: For a curvature of 1.0, the following needs to be added to the OpenCRG road file header:

*CURVTRSF = 1.0

If the keyword CURVTRSF is not found in the header section, then the curvature will be set to 0.0 as a default value.

2.1.5 Real-Time Platform Support

MF-Tyre/MF-Swift 2212 now supports:

- · dSPACE DS1006 and SCALEXIO versions up untill 2020-B
- SimWB up untill 2020.2-0 (gold)

2.1.6 Bug fixes

- The parameter Q_CAM in the Tire property file is taken into consideration only when using FITTYP is 61. For newer FITTYP versions, this parameter is ignored.
- The parameters in the TIR file can be specified in the scientific notation for zero values as well. Previously, the scientific notation (E) was accepted only for non zero values
- Running unlicensed modes for longer than 10 minutes will not cause a license failure anymore.
- The parameters Q_LIMP_3 and Q_LIMP_4 are no longer supported for FITTYP 60 for MF-Tyre/MF-Swift 2212

3 License Manual

In this section the licensing system is described for usage of MF-Tyre/MF-Swift on both desktop and real-time platforms.

In the remainder of this document the following convention is used:

<installationdir>: The full path of the directory where the MF-Tyre/MF-Swift product is installed, including the version, for example: C:\simcenter_tyre\mftyre_mfswift.

New Siemens Licensing mechanism for Simcenter Tire products

The licensing mechanism for Simcenter Tire MF-Tyre/MF-Swift 2022.1 has been changed to the Siemens License Server. The Siemens License Server uses a new vendor DEAMON called SALT, instead of MADLIC. Kindly refer to the section Obtaining a License on the details for obtaining a license for MF-Tyre/MF-Swift 2212

3.1 Obtaining a License

The various licenses for MF-Tyre/MF-Swift products can be obtained from the Siemens Digital Industries sales representative and/or our channel partners. For creating the license file some mandatory information is required. This is used to identify the computer on which the license server shall be deployed:

- Composite HostID Value(s)
- · Host Name
- MAC Address


In order to obtain the Composite HostID Value(s), run the **getcid** executable on the machine that is designated as the license server for MF-Tyre/MF-Swift. Send the Composite HostID Value(s) to the Sales representative to generate the license files for MF-Tyre/MF-Swift. On Windows platforms launch getcid.exe and on Linux platforms launch getcid.

In case of NodeLock counted license, run the **getcid** executable on the local machine that is to be used for running MF-Tyre/MF-Swift.

The **getcid** executable is provided as part of the zip file. If these executables are not available, contact the Siemens Digital Industries sales representative and/or our channel partners.

Section License protection on RT platforms describes the information required to obtain a license for a specific Real-time platform.

Composite HostID Value(s):
Multiple composite hostids (CIDs) indicate you have multiple network adapters. You should select the first CID or the most appropriate CID based on the network adapter which is currently active. The Siemens Software Licensing CIDs for this host
COMPOSITE=44CBFF882B0A COMPOSITE=26F5634E0CB4 (MAC :)
Press the ENTER key to continue

3.2 License Types and Features

The MF-Tyre/MF-Swift product is split in different functional modules:

- MF-Tyre: The base model for vehicle handling simulations
- Turnslip: The add-on to MF-Tyre for parking and low velocity maneuvering applications
- · Rigid Ring: The add-on to MF-Tyre representing tire dynamics up to 100Hz
- Enveloping: The add-on to MF-Tyre representing tire arbitrary road unevenness
- Temperature & Velocity: The add-on to MF-Tyre to increase the accuracy by involving the temperature and velocity model calculations

The combination of Rigid Ring and Enveloping allows for reliable uneven road simulations, for example for ride comfort and/or road load calculation purposes.

Siemens offers MF-Tyre/MF-Swift as both a desktop and a Real-Time product. Within the desktop product the MF-Tyre module is typically freeware functionality without license protection. The Turnslip, Rigid Ring and Enveloping modules are combined in one product and license is protected by one license feature. Temperature & Velocity model is individually license protected. The desktop product is available in both a NodeLock Counted variant and a Floating Network variant.

Functional Module	License Feature		
MF-Tyre	Freeware		
Turnslip Rigid Ring Enveloping	sctire_mfswift_sw		
Temperature & Velocity	sctire_mfswift_tv		

Within the Real-Time product all functionality is license protected. The product comes with both a desktop license allowing to setup the simulation experiment as well as an entitlement file allowing to run the simulation on the Real-Time target (see section License protection on RT platforms for more information on entitlement files). In the Real-Time product the MF-Tyre, Turnslip, Rigid Ring Enveloping, and Temperature & Velocity models are individually available and hence individually license protected. The Real-Time product is available as NodeLock Counted only.

Functional Module	Desktop License Feature
MF-Tyre	-
Turnslip	sctire_mfswift_ts
Rigid Ring	sctire_mfswift_rr
Enveloping	sctire_mswift_env
Temperature	sctire_mfswift_tv

Note: The MF-Tyre part of MF-Tyre/MF-Swift Real-Time does not have a desktop license feature since it is available as a freeware. However it still requires an entitlment file to run on the Real-time platform. The section License protection on RT platforms describes the information required to obtain an entitlment file for all supported platforms.

3.3 License protection on desktop platforms

This chapter provides procedural information on how to configure and manage the Siemens License Server.

Note: This section describes the steps in setting up the Siemens License Server after obtaining a valid license file for MF-Tyre/MF-Swift from the Siemens Digital Industries sales representative and/or our channel partners.

The MF-Tyre/MF-Swift license is protected with Siemens License Server. The license tools can be installed with the main MF-Tyre/MF-Swift installer, which can be obtained from the product download area on Siemens Support Center. In order to install the Siemens License Server, the License tools checkbox needs to be selected during the installation. This will automatically launch the Siemens License Server installation tool. The licensing tools are then installed in the license subdirectory of the MF-Tyre/MF-Swift installation directory.

Licensing releases have version identifiers and release schedules that are different from Siemens Digital Industries Software products. For overall information about licensing, refer to the Siemens Digital Industries Software License Server Installation Instructions located in the license subdirectory of the MF-Tyre/MF-Swift installation directory. The purpose of the license server manager is to:

- Start and maintain all the vendor daemons listed in the VENDOR lines of the license file, and
- Refer application checkout (or other) requests to the correct vendor daemon, for example saltd.

The Siemens License Server, and henceforth the license server system, will automatically be started during the installation process, and also at system startup after the installation.

Note: Start Siemens License Server only on the server machine specified on the SERVER line in the license file. If you are running three-server redundant license server systems, maintain an identical copy of the license file (as well as the Siemens License Server) locally on each server machine rather than on a file server.

If you do not do this, you lose all the advantages of having redundant servers, since the file server holding these files becomes a single point of failure.

3.3.1 Starting the License Server Manager on Windows and LINUX Platforms

The license server manager must be started before MF-Tyre/MF-Swift can be used. The license tools can be installed with the main MF-Tyre/MF-Swift installer which can be obtained from the product download area. In order to install the Siemens License Server, the License tools checkbox needs to be selected during the installation. This will automatically launch the Siemens License Server installation tool.

The license file needs to be selected in the Siemens License Server installation wizard, in order to install the licensing toolkit.

Note: The versions of Simcenter Tire MF-Tyre/MF-Swift older than 2212are not compatible with the latest Siemens License Server. Refer to the user manuals of the respective version regarding Licensing.

The license server manager can also be started via interactive install or non-interactive install on the command line. Both methods are discussed in the following sections.

Installing the License Server from the Command Line

Rather than using the Siemens License Server Installer wizard to install the license server, you can install from the command line either interactively (with prompts) or non-interactively (without prompts). The required tools are installed in the license subdirectory of the MF-Tyre/MF-Swift installation directory.

Note: Once the license server is started, set the environment variable SALT_LICENSE_-SERVER on the corresponding machines that will use MF-Tyre/MF-Swift tire model. The environment variable SALT_LICENSE_SERVER should be set to <portnumber>@<hostname> specified in the license file

Before you begin, refer to "Pre-Installation Requirements and Considerations" section in the Siemens Digital Industries Software License Server Installation Instructions. For complete command syntax, option descriptions, and examples, refer to "SiemensLicenseServerCommand" section in Siemens Digital Industries Software License Server Installation Instructions

Interactive Install

An interactive install uses command prompts to guide you through the installation. Type the following on the command line:

On Windows

SiemensLicenseServer_<version>_<platform>.exe -text

On Linux

SiemensLicenseServer_<version>_<platform>.bin -text

Non-Interactive Install

A non-interactive install does not use command prompts because you enter a value for the arguments with the initial command. This install method is useful for system administrators who want to automate the installation with scripts. Type the following on the command line:

On Windows

SiemensLicenseServer_<version>_<platform>.exe <arguments>

On Linux

SiemensLicenseServer_<version>_<platform>.bin <arguments>

Note: For complete command syntax, option descriptions and examples, refer to the "SiemensLicenseServerCommand" section in Siemens Digital Industries Software Licensing Manual.

Note: It is important that both the license file and the log file are readable and writable for the Windows Local System account. Therefore, C:\Program Files and user specific directories are not allowed.

The license server system starts and writes its debug log output to the defined log-file.

3.4 License protection on RT platforms

On Real-Time platforms (such as dSPACE ds1006, SCALEXIO, NI-PXI, Concurrent iHawk and IPG Xpack4 platforms), applications of MF-Tyre/MF-Swift 2020.1 or higher do not communicate to an FlexLM license server. Simcenter Tire instead packages the purchased license features into an entitlement file, which can be obtained from your Siemens sales representative. This entitlement file is node-locked; it can only be used with a predefined set of machine(s) and/or core(s). Without a (valid) entitlement file MF-Tyre/MF-Swift cannot be used on said platforms.

If you are using MF-Tyre/MF-Swift through software of a 3rd party, then refer to the 3rd party documentation on how to pass on the entitlement file and its location.

3.4.1 Obtain the serial number(s) for dSPACE platforms

The entitlement file is node-locked to a predefined set of machine(s) and/or core(s) based on the serial number(s). The serial number(s) for dSPACE DS1006 and SCALEXIO can be obtained from "dSPACE ControlDesk -> Platforms -> Manage Platforms -> Manage Recent Platform Configuration. Alternatively for SCALEXIO dSPACE ConfigurationDesk -> Platforms -> Manage Platforms -> Manage Recent Platform Configuration can be used.

Type:	DS1006	
Serial number:	100000.000	
Port address:	0x300	
Connection type:	Bus	
Active:		
ds1006_2		
Туре:	DS1006	
Serial number:	1710000000	
Port address:	0x310	
Connection type:	Bus	

😺 Manage Recent Platform Con	ControlDesk figuration	_		×
File Edit View				
Recent Platform Configuration	:			
SCALEXIO Type: Connection type: Active: <i>ScaleXIO Real-Time PC</i> Serial number: IP address: MAC address: DSNumber:				
Type:	SCALEXIO			
Connection type:	Net			
Active:				
▲ SCALEXIO Real-Time PC				
Serial number:	847 A.			
IP address:	- 164 C. L. K.			
MAC address:	31 12 10 20	12 mil		
DSNumber:	14 M 12			
			_	

0 0		D
Configu	iration	Desk
Connige	anadion	0001

3.4.2 Obtain the serial number(s) for Concurrent iHawk and IPG Xpack4 platforms

To obtain the serial number(s) for Concurrent iHawk and IPG Xpack4 (Linux Real-Time) platforms, a hardware identification tool is required. This is supplied by Siemens and can be obtained by contacting the Sales representative. To obtain the serial number(s), run the Hardware identification tool on the Linux Real-Time platform(s):

./mfswift_query_hardware_id

3.4.3 Obtain the serial number(s) for NI-PXI platforms

The serial number of your real-time system(s) is shown in the NI-MAX application when clicking on 'Remote Systems' behind the 'Serial Number' label.

System Settings	
Hostname	LIG INTEX ITTOD
IP Address	146, 122,58,135 (Elmanne) 0.0.00 (Elmanne)
DNS Name	hg Inipai 100 Inetplaceds.com
Vendor	National Instruments
Model	PXIc 8840 Oacd Core
Serial Number	03194C3F
Firmware Version	2.1.30
Hardware Revision	A
Operating System	NI Linux Real Time x64 4.14.87 n49 og 7.0.010 x64 189
Slot Number	1
Status	Connected - Running
System Start Time	10-12-2020 1 601
Comments	
Locale	English
	Update Firmware

3.4.4 Set up Licensing for Simulink

Put the entitlement file, as supplied by Simcenter Tire upon purchasing Real Time License Features, on the Host machine of the real time platform. Store the absolute path in the environment variable MFSWIFTRT ENTITLEMENT FILE.

For Windows OS, it is recommended to set the variable through "System Properties". Typically, this can be done through "Control Panel->System and Security->System->Advanced system settings->Environment Variables->New...".

3.5 License Troubleshooting Guide

3.5.1 Windows License Troubleshooting

- 1. The versions of MF-Tyre/MF-Swift older than 2212are not compatible with the Siemens License Server. Refer to the user manuals of the respective version regarding Licensing.
- 2. The environment variable SALT_LICENSE_SERVER should be set to <portnumber>@<hostname>; portnumber is the connection port number of the license server, where hostname is the name of the license server without the domain name. See the first line in the license file for these details Note that the first hostname should be <portnumber>@localhost. This will force the system to check if it is detached from the network.
- 3. Considerable delays in startup of the applications have been noticed if the license file contains license strings of which the end date has expired.
- 4. Considerable delays in startup of the applications have been noticed if nonexistent servers are assigned to the SALT_LICENSE_SERVER environment variables or even in the registry.
- 5. For overall information about troubleshooting licensing, refer to the Siemens Digital Industries Software License Server Installation Instructions located in the license subdirectory of the MF-Tyre/MF-Swift installation directory.

3.5.2 Real Time License Troubleshooting

Any problem with the entitlement file will make an MF-Tyre/MF-Swift simulation fail at initialization. This section helps to identify and solve the problems.

- The message "ERROR IO error : could not determine file size!" means that the entitlement file could not be opened. This is typically caused by the entitlement file not being in the expected location or having an incorrect name.
- The message "LICENSE could not be validated" indicates that the content of the entitlement file is not as required by the Real Time application. Please contact your Siemens Digital Industries sales representative.

4 User Manual

4.1 Introduction

This chapter contains specific information regarding the usage of the MF-Tyre/MF-Swift product.

The contact interaction between tires and the road largely affects the driving performance of vehicles. Vehicle development engineers optimize the tire-road interaction so that the vehicle handles well and operates both safely and comfortably under any circumstance. To analyze the influence of tire properties on the dynamic behavior of vehicles, the engineer requires an accurate description of the tire-road contact phenomena. Simcenter Tire provides a complete chain of tools and services for detailed assessment and modeling of vehicle-tire-road interaction.



Figure 4.1: The Simcenter Tire tool chain

The tire model MF-Tyre/MF-Swift can be used in vehicle dynamics simulations with all major simulation packages. The model efficiently and accurately represent tire behavior for applications ranging from steady-state to complex high frequency dynamics. MF-Tyre/MF-Swift contains the latest implementation by Simcenter Tire of Pacejka's renowned 'Magic Formula'.

With MF-Tyre/MF-Swift you can simulate steady-state and transient behavior up to about 100 Hz, which makes it a suitable tire model for:

- · vehicle handling simulations including parking maneuvers,
- vehicle control prototyping (e.g. ABS / ESC),
- rollover analysis,
- ride comfort analysis,
- durability analysis,

• vibration analysis.

4.1.1 MF-Tyre/MF-Swift

MF-Tyre/MF-Swift is Simcenter Tire's implementation of the world-standard Pacejka Magic Formula, including the latest developments. MF-Tyre/MF-Swift's semi-empirical approach enables fast and robust tire-road contact force and moment simulation for steady-state and transient tire behavior. MF-Tyre/MF-Swift has been extensively validated using many experiments and conditions. For a given pneumatic tire and road condition, the tire forces and moments due to slip follow a typical characteristic. These steady-state and transient characteristics can be accurately approximated by MF-Tyre/MF-Swift.

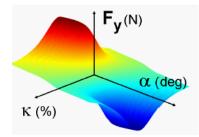


Figure 4.2: Steady-state tire lateral force as a function of longitudinal and lateral slip, calculated using MF-Tyre/MF-Swift

MF-Tyre/MF-Swift calculates the forces (F_x, F_y) and moments (M_x, M_y, M_z) acting on the tire for given

- · pure or combined slip conditions,
- · longitudinal, lateral and turn slip,
- · wheel inclination angle ('camber') and
- the vertical force (F_z) .

In addition to the Magic Formula description, MF-Tyre/MF-Swift uses a rigid ring model, which assumes the tire belt behaves like a rigid body. By accounting for inertial, centrifugal and gyroscopic effects, the model is accurate in the frequency range where the bending modes of the tire belt can be neglected which, depending on the tire type, is up to 100 Hz. A integrated thermodynamic model predicts the evolution of the temperature profile and propagates the effect of the tire temperature into the Magic Formula. Both the rigid ring and thermodynamic model have been extensively validated using measurements of a rolling tire.

Six main elements of the model structure can be distinguished. The first four elements, illustrated in figure 4.3, are primarily based on Pacejka [1] and Besselink [3]. The Simcenter Tire team has made several crucial changes and enhancements in cooperation with Prof. Pacejka to the model in order to improve functionality, robustness, calculation times, user-friendliness and compatibility between various operating modes.

1. Elastically suspended rigid ring (6 degrees of freedom): represents the tire sidewalls and belt with its mass and inertia properties. The rigid ring describes the primary vibration modes of the tire belt.

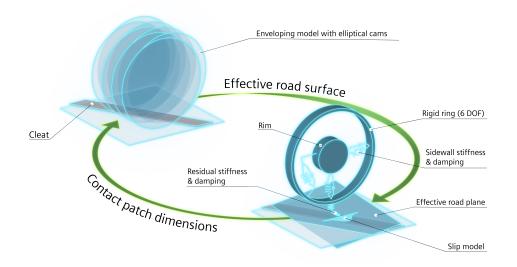


Figure 4.3: Schematic representation of MF-Tyre/MF-Swift.

- 2. Residual stiffness & damping: have been introduced between contact patch and rigid ring to ensure that the total quasi-static tire stiffnesses in vertical, longitudinal, lateral and yaw directions are modeled correctly. The total tire model compliance is made up of the carcass (ring suspension) compliance, the residual compliance (in reality a part of the total carcass compliance) and the tread compliance.
- 3. Contact patch model: features horizontal tread element compliance and partial sliding. Based on this model, the effects of the finite length and width of the footprint are approximately included.
- 4. Magic Formula steady-state slip model: describes the nonlinear slip force and moment properties. This enables an accurate response also for handling maneuvers.

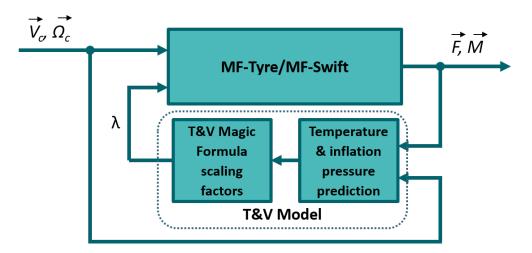


Figure 4.4: Illustration of Temperature & Velocity model in MF-Tyre/MF-Swift.

The fifth and sixth element make up the Temperature and Velocity model as developed by Lugaro et al [4, 5]. With reference to figure 4.4,

- 5. the thermodynamic model predicts the evolution of the temperature profile and inflation pressure.
- 6. The effect of the tire temperature and rolling speed are then captured by appropriate Magic Formula scaling factors.

4.1.2 Model Usage and computational performance

MF-Tyre/MF-Swift is a plug-in to Vehicle Dynamic Simulation (VDS) packages. The VDS package communicates with the tire model following the Standard Tire Interface format, see Riedel [2] for details. The tire model in its turn is communicates with the road model (see Section 4.2.1). The VDS package and the tire model are fed by the Tire Property File (TPF). The VDS package specifies the operating mode of the model, see section 4.2.

The dynamical tire model can be integrated with its own (internal) solver. This internal solver runs at a fixed time step of 1 millisecond. As a result, any simulation that includes this tire model will only obtain an update from the tire model at simulation time steps which are a multiple of 1 millisecond. When calling the tire model at intervals less than 1 millisecond apart, the tire model will return the calculated forces and moments from the previous time point.

In order to provide guidelines, the computational performance of the MF-Tyre/MF-Swift has been checked on the Simcenter Tire team's Concurrent iHawk Real-Time computer (SimWB 7.9-0, Red-Hawk Linux 6.5.3, Intel Xeon E5-1650 v3 @ 3.50Ghz,16Gb RAM). The computational performance is determined with specific MF-Tyre/MF-Swift operating modes and settings. For a detailed description of the operating modes and settings is referred to section 4.2 of this manual. All results represent the turnaround time of a simulation including:

- · A Matlab Simulink model with one tire
- MF-Tyre/MF-Swift 2212 in the form of a Matlab Simulink s-function
- · Matlab Simulink ODE-1 solver with 1 millisecond time-step
- Default 205/60R15 TIR-file
- OpenCRG road including a square 15x15 mm obstacle

The following table provides an overview of the turnaround time in microseconds required to compute the tire model per millisecond time-step of the overall Matlab Simulink simulation.

Operating Mode						T&V	Enve	loping se	etting	run time (µs)
Contact r	nethod	Dyna	mics	Slip	forces		Road _inc	Ellips _n_ length	Ellips _n_ width	
Smooth	Env	N-L trans.	Rig. Ring	Comb.	Comb. Turnslip	-				
х		x		х		disabled	-	-	-	19
х		х		х		Dyn. + IP	-	-	-	22
х		х			х	disabled	-	-	-	21
Х			х	х		disabled	-	-	-	22
	х		х	х		disabled	0.01	10	10	87
	х		х	х		disabled	0.005	10	10	146
	х		х	х		disabled	0.01	5	5	53

Note that these figures are meant as a guideline and the computational performance may vary depending on customers specific systems. No rights can be derived from this publication.

4.1.3 Conventions

This section explains the axis system and units, used in MF-Tyre/MF-Swift.

Axis System

MF-Tyre/MF-Swift uses the ISO sign conventions as shown in figure 4.5 below. For a more comprehensive description of the sign convention and axis system, see [1].

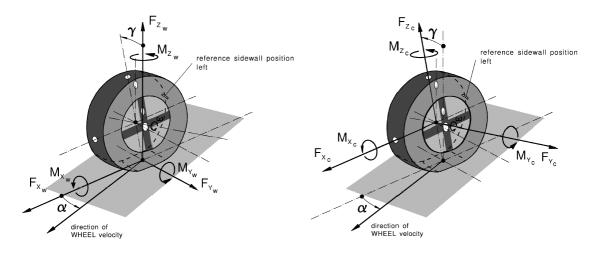


Figure 4.5: ISO sign conventions

The above defined sign convention corresponds with the following definitions of the longitudinal slip and lateral slip angle α . The longitudinal slip is defined as

$$\kappa = -\frac{V_{sx}}{V_x};\tag{4.1}$$

note $\kappa = -1$ means braking at wheel lock. The lateral slip angle is defined as

$$\tan(\alpha) = \frac{V_{sy}}{|V_x|}.$$
(4.2)

The velocities used in equations (4.1) and (4.2) are

- V_x : the x-component (in the wheel center plane) of the wheel contact center horizontal (i.e. parallel to road) velocity V.
- V_s : the wheel slip velocity (with components V_{sx} and V_{sy}), which is defined as the horizontal velocity of the slip point. The slip point is attached to the wheel at a distance that equals the effective rolling radius below the wheel center in the wheel center plane.

Units

The International System of Units (SI units) is used for the complete tire model. This implies that the tire model input (i.e. the Tire Property File) and the output use SI units by default. To define the system of units for the tire model, the Tire Property File contains a [UNITS] section. By specifying the appropriate symbol, as denoted in the tables below, for the variables in this section the system of units is set SI. In the [UNITS] section of the Tire Property File the following symbols denote the SI units that are allowed:

Variable	Symbol
LENGTH	'meter'
FORCE	'newton'
ANGLE	'radians'
MASS	'kg'
TIME	'second'
TEMPERATURE	'kelvin'

Mass and Inertia

It is important to note that for the steady-state, linear transient and non-linear transient dynamics modes, MF-Tyre/MF-Swift does not have any mass. Hence, the definition of the mass and moments of inertia of the wheel in the simulation package should correspond to the mass and inertia moments of the tire (m_{tire}) and the rim (m_{rim}). However, when the rigid ring dynamics mode is selected, MF-Tyre/MF-Swift accounts for the mass of the belt internally. In this case, the belt mass (m_{belt}) and moments of inertia should be subtracted from the mass and inertia defined in the VDS package.

Note: Some VDS packages subtract m_{belt} automatically, some require the user to account for the subtraction. Please check the VDS package documentation.

The mass definitions are summarized in the table below, the same holds for the inertia definitions:

Dynamics mode	Tire model mass	VDS Mass
Steady state Linear Transient Nonlinear Transient	_	$m_{tire} + m_{rim}$
Rigid Ring	m_{belt}	$\overline{m_{tire} + m_{rim} - m_{belt}}.$

4.1.4 Technical Support Details

Support is provided to those who have a support contract. For support please contact your local representative or create a ticket using the global Siemens Support Center platform via https://support.sw.siemens.com/.

4.2 **Tire Model Operating Modes**

The behavior of the tire model is defined by specifying the so-called operating mode. The operating mode is set by defining the:

- type of road that the tire will be driving on (denoted by the road method, see section 4.2.1)
- side on which the tire is mounted in the simulation model (denoted by the tire side, see section 4.2.2)
- tire-road contact evaluation method (denoted by the contact method, see 4.2.3)
- tire dynamics model (denoted by the dynamics mode, see section 4.2.4)
- components of the contact-point force and moment vector when evaluating the Magic Formula (denoted by the slip-force mode, see section 4.2.5).
- which parts of the temperature model are active (denoted by the temperature mode, see section 4.2.7).

The operating mode will be provided to the library via the interface of the simulation package which is being used. Except for the temperature mode, this is done through the ISWITCH parameter as describe in section 4.2.6. How to set the temperature mode is explained in section 4.2.7.

Note: Some operating modes are restricted by the interface between the tire model and simulation package, see corresponding Tutorial for more information.

4.2.1 Road method

For the tire model to generate forces and moments it requires information of the road it is traveling on.

In MF-Tyre/MF-Swift this road surface information can originate from either an internal road (e.g. the default flat road or the OpenCRG road implementation in MF-Tyre/MF-Swift) or a road definition coming from the VDS package, the so-called external road. To define the source of the road-surface information the road method parameter needs to be set. The following values may be selected for the road method:

Value	Description
1	Default flat road
2	OpenCRG road
3	External road

Section 4.4 gives a detailed description of the various road method definitions.

Note: MF-Tyre/MF-Swift supports road curvature with OpenCRG road files. The road curvature can be set, in the OpenCRG road file, by using the keyword CURVTRSF in the header section, as a comment.

*CURVTRSF = 1.0

Comments in OpenCRG file are set using the * character. If the keyword CURVTRSF is not found in the header section, then the curvature will be set to 0.0 as a default value.

4.2.2 Tire side

Depending on the conicity and/or ply-steer of a tire, a tire can have asymmetric behavior. Due to this asymmetric behavior it is necessary, in a vehicle simulation model, to specify on which side of the vehicle a specific tire is mounted. Specifying the wrong tire-side can lead to unexpected simulation results.

The tire-side parameter can have to the following values:

Value	Description
1	Tire is mounted on the <i>left</i> side of the vehicle
2	Tire is mounted on the <i>right</i> side of the vehicle
3	Symmetric tire characteristics (asymmetric behavior is removed)
4	Mirror tire characteristics

In the Tire Property File, it should be specified how the tire measurement was executed: in other words, if a left or right tire was tested.

In the Tire Property File [MODEL]-section, the keyword TYRESIDE can be set to either "LEFT" or "RIGHT" (the default is: "LEFT").

If "TYRESIDE" is "LEFT" and the tire is mounted on the right side of the vehicle (Value = 2), mirroring will be applied on the tire characteristics.

It is also possible to remove asymmetrical behavior from an individual tire by specifying Value = 3.

4.2.3 Contact method

To be able to determine the tire response, the tire model needs to be able to obtain information about the road surface, again see section 4.4. This information is obtained through the tire-road contact method. The following value(s) may be selected for the tire-road contact method:

Value	Description
0/1	Smooth-road contact
3	Moving road contact
5	Enveloping contact

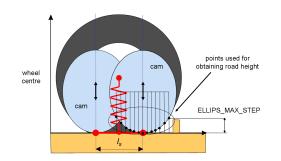
The contact method uses global coordinates to obtain the road height. As already mentioned, the combination of road method and contact method determines the response of the tire model.

The moving road method can be used for simulations of four poster test rigs.

Note: From MF-Tyre/MF-Swift v7.3 the motorcycle tire contact is supported. Contrary to the MF-Tyre/MF-Swift v6.2 implementation, this contact method is not supported by means of an explicit Tire Model Operating Mode. The motorcycle contact algorithm is automatically enabled when non-zero values for parameters MC_CONTOUR_A and MC_CONTOUR_B are present in the tire property file.

Only a limited number of combinations of road method and contact method are allowed by the tire model. The combination of road method and contact method that are allowed is listed in the table below:

	Smooth-road	Enveloping	Moving road
Default flat road	yes	yes	no
OpenCRG road	yes	yes	no
External road	yes ²	no ¹	yes ²


Notes:

- 1. The External road defined in Simulink generates just one road point. The External road is therefore not compatible with the Enveloping contact.
- 2. The availability of this contact method depends on the selected VDS package that is used.

Contact Method Enveloping settings This 3D contact method is to be selected when the road unevenness typically contains wavelengths smaller than two to three times the contact patch length. This occurs when modeling a cobblestone road or when it contains discrete obstacles, e.g. cleats, bumps or potholes. See Pacejka [1] for a more detailed description of this contact model and its usage.

This contact model requires a number of user defined input parameters. These parameters can be set in the [MODEL] and [CONTACT-PATCH] sections of the tire property file, see table below.

Parameter	Model section	Description
ROAD_INCREMENT	[MODEL]	Size of the road increments. This parameter affects the number of points on the elliptic cam used in the contact calculation
ELLIPS_MAX_STEP	[CONTACT-PATCH]	Threshold value indicating the largest obstacle height that can be encountered on this road. (see figure 4.6.)
ELLIPS_NWIDTH	[CONTACT-PATCH]	Number of parallel ellipses covering the width of the contact patch. For sharp obstacles the default value of 10 parallel ellipses generally is sufficient for an accurate simulation. (see figure 4.7.) However, with more smooth roads or with cleats oriented perpendicular to the X-axis this value can be limited. For faster simulation the number of parallel ellipses should be limited.
ELLIPS_NLENGTH	[CONTACT-PATCH]	Number of successive ellipses covering the length of the contact patch. For sharp obstacles the default value of 10 successive ellipses generally is sufficient for an accurate simulation. (see figure 4.7.) However, with more smooth roads or with cleats oriented perpendic- ular to the X-axis this value can be limited. For faster simulation the number of ellipses should be limited.

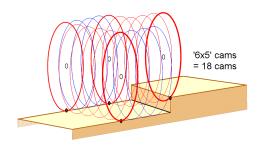


Figure 4.6: graphical explanation of the EL-LIPS_MAX_STEP parameter.

Figure 4.7: an example of 6 parallel cams in the front & rear row and 5 successive cams at both sides.

4.2.4 Dynamics method

The flexibility of the tire carcass, the length of the contact patch, the mass and inertia moments of the belt determine the transient response of the tire. Depending on the frequency under which the tire is excited, different dynamic modes can be selected:

Mode	Frequency range	Description
0	< 1 Hz	Steady state
1	$< 10 \; \mathrm{Hz}$	Transient (linear)
2	$< 10 \; \mathrm{Hz}$	Transient (non-linear)
3	$< 100 \ \mathrm{Hz}^1$	Rigid ring dynamics ²

The dynamics modes mentioned above distinguish themselves through the complexity of the dynamical model. In the case of Steady-state, no dynamic/transient tire model behavior is included. The linear transient mode incorporates tire relaxation through the usage of empirically determined models for the relaxation lengths. In the non-linear transient mode, a physical approach is used in which the compliance of the tire carcass is considered to determine the lag. This approach replicates the fact that, at high levels of slip, the lag diminishes in response to variations in wheel slip and vertical load. In the rigid ring mode, the belt as a rigid body is further introduced. The belt is connected to the rim by means of springs and dampers, its mass and inertia moments are also taken into account; this permits to accurately model the tire dynamic behavior also in a higher frequency range.

Notes:

- 1. The valid frequency range also depends on the tire type.
- 2. Rigid ring dynamics + initial statics can be enabled by setting the environment variable MFS_RR_IS_ITERATIONS to 5000. "Initial statics" refers to finding the static equilibrium of the tire belt (rigid ring/body) at the start of the simulation. Setting the environment variable MFS_RR_IS_ITERATIONS to zero will disable initial statics (default setting). Rigid ring dynamics + initial statics is not available on HIL platforms. The setting will be ignored when running on HIL setups.

For a more comprehensive explanation of the tire relaxation, see Pacejka [1].

4.2.5 Slip Forces method

When using MF-Tyre/MF-Swift one has the option to select which components of the force and moment vector one would like to use during the simulation.

The selection of the appropriate slip-forces mode depends in part on the maneuver one tries to simulate, e.g. for parking maneuvers turn slip should be switched on.

It is also possible to switch off parts of the calculation. This is useful when e.g. debugging a vehicle model, or if only in-plane tire behavior is required. This component selection is controlled through the slip-forces mode.

The following values for the slip-forces mode may be selected:

Mode	Operating Mode			de	Description		
	F_{xw}	F_{yw}	F_{zw}	M_{xw}	M_{yw}	M_{zw}	
0			Х				No Magic Formula evaluation
1	Х		Х		Х		Longitudinal components only
2		Х	Х	Х		Х	Lateral components only
3	Х	Х	Х	Х	Х	Х	All components in uncombined mode
4	Х	Х	Х	Х	Х	Х	All components in combined mode
5	Х	Х	Х	Х	Х	Х	All components in combined mode turn slip mode switched on

For the components see section 4.1.3.

Note: Turn slip functionality is only allowed in combination with Non-linear transient or Rigid ring dynamics mode, also see section 4.2.4. An error message will appear otherwise!

4.2.6 Definition of the ISWITCH parameter

Although most packages use a Graphical User Interface (GUI) to select the operating mode to the tire model, in some cases the operating modes are combined into a single variable called ISWITCH, see Riedel et al [2] for details.

The current ISWITCH parameter is composed by concatenating the integers defining the road method (E), the tire side (A), the contact method (B), the dynamics mode (C) and the slip-forces mode (D). Hence given these integers, the ISWITCH = EABCD. For example, ISWITCH = 31124 represents:

- **E = 3** : external road;
- A = 1 : left tire;
- **B** = 1 : smooth road contact;
- **C** = **2** : transient (non-linear);
- **D** = 4 : combined slip forces/moments;

For backward compatibility reasons the current version 2212 also supports the version 6.2 (4-digit) ISWITCH parameter formulation. In this case the road method is by default set to external road. Note that the rules belonging to the correct combination of contact and road method still apply in this case.

4.2.7 Temperature mode

The T&V model can be activated through the TV_MODEL parameter in the tire property file. If the VDS package provides a way to set the temperature mode, it will override the TV_MODEL parameter.

Value	Mode	Description
0	Disabled	No temperature effects are modelled. This is the default, and the only value allowed for FITTYP earlier than 70.
1	Static	The temperature prediction model is deactivated. Throughout the simulation the Magic Formula scaling factors are calculated based on the parameters defined in the TIR file; initial temperatures (INIT-TREAD, INITLINER, INITCOREAIR, TROAD and TAMB), longitudinal velocity (LONGVL) and inflation pressure (INFLPRES).
2	Dynamic without IP	The T&V model is updated continuously, but the inflation pressure remains constant throughout the simulation.
3	Dynamic with IP	The T&V model is updated continuously, as is the inflation pressure.

The T&V model only works with FITTYP \geq 70 onwards.

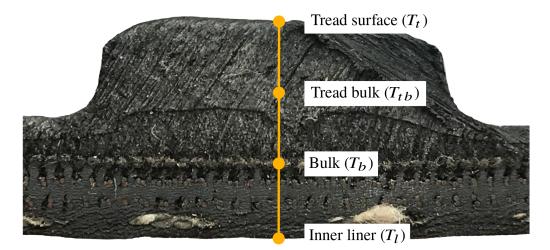


Figure 4.8: Illustration of Temperature & Velocity model in MF-Tyre/MF-Swift. This figure was first published in the SAE technical paper by Lugaro et al [4].

With reference to figure 4.8 (taken from the SAE technical paper by Lugaro et al [4]) the time-dependent temperature state of the tire is described by

- T_t : tread surface temperature,
- T_{tb} : tread bulk temperature at half way between the surface and belt positions,
- T_b : tire bulk temperature at the interface between the tread and belt,
- T_l : inner liner temperature,
- T_i : core air temperature (not present in figure 4.4).

Except for T_b , each of these temperature values is exported as a varinf signal. Section 4.5.2 gives a complete overview of all varinf signals.

The initial condition for the temperature state is specified by three parameters in the [OPERATING_CONDITIONS] - section of the tire property file:

INITTREAD	Initial tread surface temperature
INITLINER	Initial inner liner temperature
INITCOREAIR	Initial core air temperature

These three parameters are required in case TV_MODEL is not equal to zero. The same is true for the TROAD, TAMB in the same section and all parameters in the [TVX_COEFFICIENTS]-section.

4.3 Tire Property File

The MF-Tyre/MF-Swift tire model is a simulation model defined by a set of parameters. The parameters are typically stored in a file, called Tire Property File. This file typically has the extension ".tir", although this is not mandatory. The structure and content of the Tire Property File is the subject of this section. Sample Tire property files are included in the installation.

Note: If a required parameter is not specified, MF-Tyre/MF-Swift will show an error message indicating that this parameter is not specified.

4.3.1 Obfuscated Tire Property Files

The MF-Tyre/MF-Swift product supports both human readable and obfuscated TIR-files. Obufscated TIR-files can be used to share tire model parameters which are confidential and/or garuantee that tire parameters are not altered after parameter identification.

In the obfuscated TIR files the model parameters are defined in a binary blob in the [OBFUSCATED] section of the file. Model parameters, described in more detail below, are not obfuscated :

- user settings,
- scaling factors,
- · the tire unloaded radius, masses and inertias.

Note: The tire unloaded radius, masses and inertias are read only parameters. All other visible parameters can be modified by user.

TIR-files can be obfuscated with the mfswift_tir_obfuscator tool which is provided with the installer in the obfuscation subdirectory of the installation directory. A password can be optionally used in the obfuscation process, allowing de-obfuscation. The mfswift_tir_obfuscator tool is not required for MF-Tyre/MF-Swift to handle obfuscated data. More detailed information is available in the 'help' of the mfswift_tir_obfuscator wich can be obtained by running mfswift_tir_obfuscator.exe -h.

Note: An obfuscated parameter cannot be overwritten by manually adding to the obfuscated TIR-file; trying this results in an abort.

4.3.2 Overview

General and Swift parameters

unit system used for the definition of the parameters
parameters on the usage of the tire model
tire dimensions
tire operating conditions, e.g. inflation pressure
tire and tire belt mass/inertia properties
vertical stiffness; loaded and effective rolling radius
tire stiffness, damping and eigenfrequencies
contact length, obstacle enveloping parameters

Input limitations (only for Magic Formula inputs)

[INFLATION_PRESSURE_RANGE] [VERTICAL_FORCE_RANGE] [LONG_SLIP_RANGE] [SLIP_ANGLE_RANGE] [INCLINATION_ANGLE_RANGE] minimum and maximum allowed inflation pressures minimum and maximum allowed wheel loads minimum and maximum valid longitudinal slips minimum and maximum valid side slip angles minimum and maximum valid inclination angles

Magic Formula

[SCALING_COEFFICIENTS] [LONGITUDINAL_COEFFICIENTS] [OVERTURNING_COEFFICIENTS] [LATERAL_COEFFICIENTS] [ROLLING_COEFFICIENTS] [ALIGNING_COEFFICIENTS] [TURNSLIP_COEFFICIENTS] Magic Formula scaling factors

coefficients for the longitudinal force Fx coefficients for the overturning moment Mx coefficients for the lateral force Fy coefficients for the rolling resistance moment My coefficients for the self aligning moment Mz coefficients for turn slip, affects all forces/moments

Temperature & Velocity Model

[TVX_COEFFICIENTS]

coefficients for the temperature and velocity model

Obfuscated data

[OBFUSCATED]

Binary data that represents the obfuscated tire parameters

4.3.3 Reduced Input Data Requirements

If no (or limited) measurement data is available, it is also allowed to omit coefficients from the Tire Property File. Built-in procedures will be used to provide a reasonable estimate for the missing data and only a small number of coefficients are needed. The next table gives the minimum required coefficients.

Coefficient	Description
FITTYP	Magic Formula version number
UNLOADED_RADIUS	Free tire radius
WIDTH	Tire width
RIM_RADIUS	Rim radius
$INFLPRES^{a)}$	Tire inflation pressure
FNOMIN	Nominal wheel load
$VERTICAL_STIFFNESS^{a)}$	Tire vertical stiffness at nominal load and inflation pressure
$PDX1^{a)}$	Longitudinal friction coefficient at nominal conditions ^{b)}
$PKX1^{a)}$	PKX1*FNOMIN is the longitudinal slip stiffness at the nominal wheel load
$PDY1^{a)}$	Lateral friction coefficient at nominal conditions ^b
$PKY1^{a}$	PKY1*FNOMIN is the maximum value of the cornering stiffness versus
	vertical load characteristic
РКҮ2 ^{а)}	PKY2*FNOMIN is the vertical load at which the cornering stiffness reaches its maximum value

- a) Highly recommended parameter (when not specified the default will be used).
- b) At nominal wheel load, nominal inflation pressure and zero camber angle.

When using a reduced parameter file, detailed effects such as combined slip, tire relaxation effects and enveloping behavior on short wavelength road obstacles are included, even when the related parameters are not explicitly specified.

Notes:

- 1. Although not strictly required it is recommended to add the enveloping settings discussed in section 4.1.2 to reduced tire property files, to adjust the behavior of the tire model. When omitted default values for these settings are used.
- 2. FNOMIN may be set equal to 0.8 * (load corresponding to tire Load index in N)
- 3. The reduced input method has been developed for passenger car tires; for other tire types (motorcycle, aircraft, etc.) estimated parameters may be less accurate.

4.3.4 Input limitations

In the Magic Formula MF-Tyre/MF-Swift enforces the limits specified in the sections [*_RANGE]. A warning is issued when the calculated

- 1. vertical load is limited to the interval [FZMIN, FZMAX],
- 2. inflation pressure is limited to the interval [PRESMIN, PRESMAX],
- 3. wheel slip is limited to the interval [KPUMIN, KPUMAX],
- 4. slip angle is limited to the interval [ALPMIN, ALPMAX],
- 5. inclination angle is limited to the interval [CAMMIN, CAMMAX].

Only the first time a limit is exceeded triggers a warning, repeated occurences are ignored.

4.3.5 Scaling Factors

Tire force and moment testing is often done in a laboratory environment (e.g. using an MTS Flat Trac or a drum). The artificial road surface on the tire test machine may be quite different from a real road surface. Combined with other factors as temperature, humidity, wear, inflation pressure, drum curvature, etc. the tire behavior under a vehicle may deviate significantly from the results obtained from a test machine. Differences of up to 20% in the friction coefficient and cornering stiffness have been reported in literature for a tire tested on different road surfaces compared to lab measurements.

For this purpose, scaling factors are included in the tire model, which allow the user to manipulate and tune the tire characteristics, for example to get a better match between full vehicle tests and simulation model. Another application of the scaling factors is that they may be used to eliminate some undesired offsets or shifts in the Magic Formula.

The most important scaling factors are:

- LMUX longitudinal peak friction coefficient
- LKX longitudinal slip stiffness
- LMUY lateral peak friction coefficient
- LKY cornering stiffness
- LKYC camber stiffness
- LTR pneumatic trail
- LKZC camber moment stiffness
- LMP parking moment at standstill

When processing the tire measurements these scaling factors are normally set to 1, but when for a validation study on a full vehicle model they can be adjusted to tune the tire behavior. The scaling factors are defined in the [SCALING_COEFFICIENTS] section of the Tire Property File (see section 4.3.2).

4.3.6 Parameters In The Tire Property File

The following table lists the required and optional parameters for each tire model version. For convenience, a comparison is made with the previous model versions.

R: Required parameter

X: Optional parameter

Note: Q_CAM is accepted for FITTYP 61 and above but only effective for FITTYP 61. For all other cases, setting a value to Q_CAM will not have an effect.

NAME	DESCRIPTION		FITTYP					
		70	62	61	60	6		
	[UNITS]							
LENGTH		Х	Х	Х	Х	X		
FORCE		Х	Х	Х	Х	X		
ANGLE		Х	Х	Х	Х	X		
MASS		Х	Х	Х	Х	X		
TIME		Х	Х	Х	Х	X		
TEMPERATURE		Х						

NAME	DESCRIPTION		F	ITTY	Р	
		70	62	61	60	6
	[MODEL]					
FITTYP	Magic Formula version number	R	R	R	R	F
TYRESIDE	Position of tire during measurements	Х	Х	Х	Х	
USE_MODE	Tire use mode switch (Adams only)	Х	Х	Х	Х	>
LONGVL	Reference speed	Х	Х	Х	Х	>
VXLOW	Lower boundary velocity in slip calculation	X	X	X	X	>
ROAD_INCREMENT	Increment in road sampling	X	X	X	X	ľ
TV_MODEL	Temperature and velocity model operation	R		^	~	
IV_MODEL	mode	n				
	[DIMENSION]					
UNLOADED_RADIUS	Free tire radius	R	R	R	R	F
WIDTH	Nominal section width of the tire	R	R	R	R	F
RIM_RADIUS	Nominal rim radius	R	R	R	R	F
RIM_WIDTH	Rim width	Х	Х	Х	Х	
ASPECT_RATIO	Nominal aspect ratio	Х	Х	Х	Х	
	[OPERATING_CONDITIONS]					i
INFLPRES	Tire inflation pressure	Х	Х	Х		
NOMPRES	Nominal pressure used in (MF) equations	Х	Х	Х		
INITTREAD	Initial treads surface temperature	Х				
INITLINER	Initial inner liner temperature	Х				
INITCOREAIR	Initial core air temperature	Х				
TROAD	Road surface temperature	Х				
TAMB	Ambient air temperature	Х				
	[INERTIA]			1	1	1
MASS	Tire mass	Х	Х	Х	Х	
IXX	Tire diametral moment of inertia	Х	Х	Х	Х	
IYY	Tire polar moment of inertia	Х	Х	Х	Х	
BELT_MASS	Belt mass	Х	Х	Х	Х	
BELT_IXX	Belt diametral moment of inertia	Х	Х	Х	Х	
BELT_IYY	Belt polar moment of inertia	Х	Х	Х	Х	
GRAVITY	Gravity acting on belt in Z direction	Х	Х	Х	Х	
	[VERTICAL]	_				ı.
FNOMIN	Nominal wheel load	R	R	R	R	
VERTICAL_STIFFNESS	Tire vertical stiffness	Х	Х	Х	Х	
VERTICAL_DAMPING	Tire vertical damping	Х	Х	Х	Х	
MC_CONTOUR_A	Motorcycle contour ellipse A	Х	Х	Х		
MC_CONTOUR_B	Motorcycle contour ellipse B	Х	Х	Х		
BREFF	Low load stiffness of effective rolling radius	Х	Х	Х	Х	
DREFF	Peak value of effective rolling radius	Х	Х	Х	Х	
FREFF	High load stiffness of effective rolling radius	Х	Х	Х	Х	
Q_REO	Ratio of free tire radius with nominal tire radius	X	X	X	X	
Q_V1	Tire radius increase with speed	X	X	X	X	
Q_V2	Vertical stiffness increases with speed	X	X	X	X	
	Quadratic term in load vs. deflection	x	x	X	X	
Q_FZ2						
Q_FCX	Longitudinal force influence on vertical stiffness	X	X	X	X	
Q_FCY	Lateral force influence on vertical stiffness	Х	Х	Х	Х	1

NAME	DESCRIPTION	FITTYP 70 62 61 60					
		70	62	61	60		
Q_FCY2	Explicit load dependency for including the	Х	Х				
	lateral force influence on vertical stiffness						
Q_CAM	Stiffness reduction due to camber	Х	Х	Х			
Q_CAM1	Linear load dependent camber angle influence	Х	Х				
	on vertical stiffness						
Q_CAM2	Quadratic load dependent camber angle	Х	Х				
	influence on vertical stiffness	.,					
Q_CAM3	Linear load and camber angle dependent reduction on vertical stiffness	Х	Х				
0 EVG1		х	х				
Q_FYS1	Combined camber angle and side slip angle effect on vertical stiffness (constant)	~	^				
Q_FYS2	Combined camber angle and side slip angle	х	х				
ų_1 15Z	linear effect on vertical stiffness	Λ	^				
Q_FYS3	Combined camber angle and side slip angle	х	х				
n=	quadratic effect on vertical stiffness						
PFZ1	Pressure effect on vertical stiffness	Х	Х	х			
BOTTOM_OFFST	Distance to rim when bottoming starts to occur	Х	Х	Х	Х		
- BOTTOM_STIFF	Vertical stiffness of bottomed tire	Х	Х	Х	Х		
I ONGITUDINAL CTIERNEGO	[STRUCTURAL] Tire overall longitudinal stiffness	Х	V		Х	I	
LONGITUDINAL_STIFFNESS	Tire overall lateral stiffness	x	X X	X X	X		
LATERAL_STIFFNESS		x	X	X	X		
YAW_STIFFNESS	Tire overall yaw stiffness	X	X	X	X		
FREQ_LONG	Undamped frequency fore/aft and vertical mode	~	^	^	^		
FREQ_LAT	Undamped frequency lateral mode	Х	х	х	х		
FREQ_YAW	Undamped frequency yaw and camber mode	X	X	X	X		
FREQ_WINDUP	Undamped frequency wind-up mode	X	X	X	X		
DAMP_LONG	Dimensionless damping fore/aft and vertical	X	X	X	X		
	mode	Λ					
DAMP_LAT	Dimensionless damping lateral mode	Х	Х	Х	Х		
DAMP_YAW	Dimensionless damping y aw and camber	Х	Х	Х	Х		
	mode						
DAMP_WINDUP	Dimensionless damping wind-up mode	Х	Х	Х	Х		
DAMP_RESIDUAL	Residual damping (proportional to stiffness)	Х	Х	Х	Х		
DAMP_VLOW	Additional low speed damping (proportional to stiffness)	Х	Х	Х	Х		
Q_BVX	Load and speed influence on in-plane translation stiffness	Х	х	Х	х		
Q_BVT	Load and speed influence on in-plane rotation stiffness	Х	Х	Х	Х		
PCFX1	Tire overall longitudinal stiffness vertical deflection dependency linear term	Х	Х	Х			
PCFX2	Tire overall longitudinal stiffness vertical deflection dependency quadratic term	Х	Х	х			
PCFX3	Tire overall longitudinal stiffness pressure dependency	Х	х	х			
PCFY1	Tire overall lateral stiffness vertical deflection dependency linear term	Х	х	х			
PCFY2	Tire overall lateral stiffness vertical deflection dependency quadratic term	х	х	х			

NAME	DESCRIPTION			ITTY		
		70	62	61	60	6
PCFY3	Tire overall lateral stiffness pressure dependency	Х	Х	Х		
PCMZ1	Tire overall yaw stiffness pressure dependency	Х	Х	Х		
	[CONTACT_PATCH]					
Q_RA1	Square root term in contact length equation	Х	Х	Х		
Q_RA2	Linear term in contact length equation	Х	Х	Х		
Q_RB1	Root term in contact width equation	Х	Х	Х		
Q_RB2	Linear term in contact width equation	Х	Х	Х		
Q_A1	Square root load term in contact length				Х	
Q_A2	Linear load term in contact length				Х	
ELLIPS_SHIFT	Scaling of distance between front and rear ellipsoid	Х	Х	Х	Х	
ELLIPS_LENGTH	Semimajor axis of ellipsoid	Х	Х	Х	Х	
ELLIPS_HEIGHT	Semiminor axis of ellipsoid	Х	Х	Х	Х	
ELLIPS_ORDER	Order of ellipsoid	Х	Х	Х	Х	
ELLIPS_MAX_STEP	Maximum height of road step	Х	Х	Х	Х	
ELLIPS_NWIDTH	Number of parallel ellipsoids	Х	Х	Х	Х	
ELLIPS_NLENGTH	Number of ellipsoids at sides of contact patch	Х	Х	Х	Х	
ENV_C1	Effective height attenuation	Х	Х			
ENV_C2	Effective plane angle attenuation	Х	Х			
Q_CFG1	Variation of location of center of force with	Х				
	camber					
	[SCALING_COEFFICIENTS]					
LFZO	Scale factor of nominal (rated) load	Х	Х	Х	X	
LCX	Scale factor of Fx shape factor	Х	Х	Х	X	
LMUX	Scale factor of Fx peak friction coefficient	Х	Х	Х	X	
LEX	Scale factor of Fx curvature factor	Х	Х	Х	X	
LKX	Scale factor of Fx slip stiffness	Х	Х	Х	Х	
LHX	Scale factor of Fx horizontal shift	Х	Х	Х	Х	
LVX	Scale factor of Fx vertical shift	Х	Х	Х	Х	
LCY	Scale factor of Fy shape factor	Х	Х	Х	X	
LMUY	Scale factor of Fy peak friction coefficient	Х	Х	Х	Х	
LEY	Scale factor of Fy curvature factor	Х	Х	Х	Х	
LKY	Scale factor of Fy cornering stiffness	Х	Х	Х	X	
LKYC	Scale factor of Fy camber stiffness	Х	Х	Х	X	
LKZC	Scale factor of Mz camber stiffness	Х	Х	Х	Х	
LHY	Scale factor of Fy horizontal shift	Х	Х	Х	Х	
LVY	Scale factor of Fy vertical shift	Х	Х	Х	Х	
LTR	Scale factor of Peak of pneumatic trail	Х	Х	Х	Х	
LRES	Scale factor for offset of Mz residual torque	Х	Х	Х	Х	
LXAL	Scale factor of alpha influence on Fx	Х	Х	Х	Х	
LYKA	Scale factor of kappa influence on Fy	Х	Х	Х	Х	
LVYKA	Scale factor of kappa induced Fy	Х	Х	Х	Х	
LS	Scale factor of Moment arm of Fx	Х	Х	Х	Х	
LMX	Scale factor of Mx overturning moment	Х	Х	Х	Х	
LVMX	Scale factor of Mx vertical shift	Х	Х	Х	Х	
LMY	Scale factor of rolling resistance torque	Х	Х	Х	Х	
LMP	Scale factor of Mz parking torque	Х	Х	Х	Х	
LSGKP	Scale factor of Relaxation length of Fx					

NAME	DESCRIPTION		F	ITTY	Ρ	
		70	62	61	60	
LSGAL	Scale factor of Relaxation length of Fy					
LGYR	Scale factor gyroscopic moment					
	55 1		I	I	ļ	1
	[INFLATION_PRESSURE_RANGE]					
PRESMIN	Minimum allowed inflation pressure	Х	Х	X X		
PRESMAX	Maximum allowed inflation pressure	Х	Х	Х		
	[VERTICAL_FORCE_RANGE]					
FZMIN	Minimum allowed wheel load	Х	Х	Х	Х	
FZMAX	Maximum allowed wheel load	Х	Х	X X	Х	
	[LONG_SLIP_RANGE]					
KPUMIN	Minimum valid wheel slip	Х	Х	Х	Х	
KPUMAX	Maximum valid wheel slip	Х	Х	X X	Х	
	[SLIP ANGLE RANGE]					
ALPMIN	Minimum valid slip angle	Х	Х	Х	X	
ALPMAX	Maximum valid slip angle	Х	Х	Х	Х	
	[INCLINATION_ANGLE_RANGE]					
CAMMIN	Minimum valid camber angle	Х	Х	Х	X	
CAMMAX	Maximum valid camber angle	X	X	X	X	
	[LONGITUDINAL_COEFFICIENTS]					
PCX1	Shape factor Cfx for longitudinal force	Х	X	Х	X	
PDX1	Longitudinal friction Mux at Fznom	Х	Х	Х	Х	
PDX2	Variation of friction Mux with load	Х	Х	Х	Х	
PDX3	Variation of friction Mux with camber	Х	Х	Х	Х	
PEX1	Longitudinal curvature Efx at Fznom	Х	Х	Х	Х	
PEX2	Variation of curvature Efx with load	Х	Х	Х	Х	
PEX3	Variation of curvature Efx with load squared	Х	Х	Х	Х	
PEX4	Factor in curvature Efx while driving	Х	Х	Х	Х	
PKX1	Longitudinal slip stiffness Kfx/Fz at Fznom	Х	Х	Х	Х	
PKX2	Variation of slip stiffness Kfx/Fz with load	Х	Х	Х	Х	
РКХЗ	Exponent in slip stiffness Kfx/Fz with load	Х	Х	Х	Х	
PHX1	Horizontal shift Shx at Fznom	Х	Х	Х	Х	
РНХ2	Variation of shift Shx with load	Х	Х	Х	Х	
PVX1	Vertical shift Svx/Fz at Fznom	X	X	X	X	
PVX2	Variation of shift Svx/Fz with load	X	X	X	X	
PPX1	Linear influence of inflation pressure on	X	X	X		
	longitudinal slip stiffness					
PPX2	Quadratic influence of inflation pressure on	Х	Х	Х		
	longitudinal slip stiffness					
РРХЗ	Linear influence of inflation pressure on peak	Х	Х	Х		
	longitudinal friction		-	_		
PPX4	Quadratic influence of inflation pressure on	Х	х	х		
	peak longitudinal friction					
RBX1	Slope factor for combined slip Fx reduction	Х	х	х	х	
RBX2	Variation of slope Fx reduction with kappa	X	X	X	X	
RBX3	Influence of camber on stiffness for Fx	X	X	X	X	1
	combined	~				

NAME	DESCRIPTION	FITTYP					
		70	62	61	60	(
RCX1	Shape factor for combined slip Fx reduction	Х	Х	Х	X		
REX1	Curvature factor of combined Fx	Х	Х	Х	Х		
REX2	Curvature factor of combined Fx with load	Х	Х	Х	Х		
RHX1	Shift factor for combined slip Fx reduction	Х	Х	Х	X		
PTX1	Relaxation length SigKap0/Fz at Fznom	~	~				
PTX2	Variation of SigKap0/Fz with load						
PTX3	Variation of SigKap0/Fz with exponent of load						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	variation of olgraph, 2 with experient of load					ļ	
0.211 /	[OVERTURNING_COEFFICIENTS]	V				1	
QSX1	Vertical shift of overturning moment	Х	X	X	X		
QSX2	Camber induced overturning couple	Х	Х	Х	X		
QSX3	Fy induced overturning couple	Х	Х	Х	Х		
QSX4	Mixed load lateral force and camber on Mx	Х	Х	Х	Х		
QSX5	Load effect on Mx with lateral force and camber	Х	Х	Х	X		
QSX6	B-factor of load with Mx	Х	Х	Х	X		
QSX7	Camber with load on Mx	Х	Х	Х	Х		
QSX8	Lateral force with load on Mx	Х	Х	Х	Х		
QSX9	B-factor of lateral force with load on Mx	Х	Х	Х	Х		
QSX10	Vertical force with camber on Mx	Х	Х	Х	Х		
QSX11	B-factor of vertical force with camber on Mx	Х	Х	Х	Х		
QSX12	Camber squared induced overturning moment	Х	Х	Х			
QSX13	Lateral force induced overturning moment	Х	Х	Х			
QSX14	Lateral force induced overturning moment with	X	X	X			
401111	camber	~	~				
PPMX1	Influence of inflation pressure on overturning moment	Х	X	X			
	[LATERAL_COEFFICIENTS]						
PCY1	Shape factor Cfy for lateral forces	Х	Х	Х	X		
PDY1	Lateral friction Muy	Х	Х	Х	Х		
PDY2	Variation of friction Muy with load	Х	Х	Х	Х		
PDY3	Variation of friction Muy with squared camber	X	X	X	X		
PEY1	Lateral curvature Efy at Fznom	X	X	X	X		
PEY2	Variation of curvature Efy with load	X	X	X	X		
PEY3	Zero order camber dependency of curvature	x	X	X	X		
rei5	Efy	~	^	^			
PEY4	Variation of curvature Efy with camber	Х	Х	Х	Х		
PEY5	Variation of curvature Efy with camber squared	Х	Х	Х	Х		
PKY1	Maximum value of stiffness Kfy/Fznom	Х	Х	Х	Х		
РКҮ2	Load at which Kfy reaches maximum value	Х	Х	Х	Х		
РКҮЗ	Variation of Kfy/Fznom with camber	Х	Х	Х	Х		
PKY4	Curvature of stiffness Kfy	X	X	X	X		
РКҮБ	Peak stiffness variation with camber squared	X	X	X	X		
РКҮ6	Fy camber stiffness factor	X	X	X	X		
	-	x	X	X	X		
PKY7	Vertical load dependency of camber stiffness			X			
PHY1	Horizontal shift Shy at Fznom	Х	X		X		
РНҮ2	Variation of shift Shy with load	Х	X	Х	X		
РНҮЗ	Variation of shift Shy with camber						
PVY1	Vertical shift in Svy/Fz at Fznom	Х	Х	Х	Х		
PVY2	Variation of shift Svy/Fz with load	Х	Х	Х	Х		
PVY3	Variation of shift Svy/Fz with camber	Х	Х	Х	X		

NAME	DESCRIPTION		F	ΙΤΤΥ	Р	
		70	62	61	60	6
PVY4	Variation of shift Svy/Fz with camber and load	Х	Х	Х	X	X
PPY1	influence of inflation pressure on cornering stiffness	Х	Х	Х		
РРҮ2	influence of inflation pressure on dependency of nominal tire load on cornering stiffness	Х	Х	Х		
РРҮЗ	linear influence of inflation pressure on lateral peak friction	Х	Х	Х		
PPY4	quadratic influence of inflation pressure on lateral peak friction	Х	Х	Х		
РРҮ5	Influence of inflation pressure on camber stiffness	Х	Х	Х		
PTY1	Peak value of relaxation length SigAlp0/R0					Х
PTY2	Value of Fz/Fznom where SigAlp0 is extreme					X
RBY1	Slope factor for combined Fy reduction	Х	Х	Х	Х	X
RBY2	Variation of slope Fy reduction with alpha	Х	Х	Х	Х	Х
RBY3	Shift term for alpha in slope Fy reduction	Х	Х	Х	Х	X
RBY4	Influence of camber on stiffness of Fy combined	Х	Х	X	X	
RCY1	Shape factor for combined Fy reduction	Х	Х	Х	Х	Х
REY1	Curvature factor of combined Fy	Х	Х	Х	Х	Х
REY2	Curvature factor of combined Fy with load	Х	Х	Х	Х	X
RHY1	Shift factor for combined Fy reduction	Х	Х	Х	Х	X
RHY2	Shift factor for combined Fy reduction with load	Х	Х	Х	х	X
RVY1	Kappa induced side force Svyk/Muy*Fz at Fznom	Х	Х	X	Х	X
RVY2	Variation of Svyk/Muy*Fz with load	Х	Х	Х	х	X
RVY3	Variation of Svyk/Muy*Fz with camber	Х	Х	Х	Х	X
RVY4	Variation of Svyk/Muy*Fz with alpha	Х	Х	Х	Х	X
RVY5	Variation of Svyk/Muy*Fz with kappa	Х	Х	Х	х	Х
RVY6	Variation of Svyk/Muy*Fz with atan(kappa)	X	X	X	X	X
0.011/	[ROLLING_COEFFICIENTS]	X				
QSY1	Rolling resistance torque coefficient	X	X	X	X	X
QSY2	Rolling resistance torque depending on Fx	Х	X	X	X	X
QSY3	Rolling resistance torque depending on speed	Х	X	X	X	X
QSY4	Rolling resistance torque depending on speed 4	Х	Х	X	Х	X
QSY5	Rolling resistance torque depending on camber squared	Х	Х	Х		
QSY6	Rolling resistance torque depending on load and camber squared	Х	Х	Х		
QSY7	Rolling resistance torque coefficient load dependency	Х	Х	Х		
QSY8	Rolling resistance torque coefficient pressure dependency	Х	X	X		
	[ALIGNING_COEFFICIENTS]		1	1	1	1 -
QBZ1	Trail slope factor for trail Bpt at Fznom	Х	X	Х	X	X
QBZ2	Variation of slope Bpt with load	Х	Х	Х	X	X
QBZ3	Variation of slope Bpt with load squared	Х	Х	Х	Х	Х
QBZ4	Variation of slope Bpt with camber	Х	Х	Х	Х	X

NAME	DESCRIPTION			ΙΤΤΥ	Р	
		70	62	61	60	6
QBZ5	Variation of slope Bpt with absolute camber	Х	Х	Х	Х	
QBZ9	Factor for scaling factors of slope factor Br of	Х	Х	Х	Х	
	Mzr					
QBZ10	Factor for dimensionless cornering stiffness of	Х	Х	Х	Х	
	Br of Mzr					
QCZ1	Shape factor Cpt for pneumatic trail	Х	Х	Х	Х	
QDZ1	Peak trail Dpt = Dpt*(Fz/Fznom*R0)	Х	Х	Х	Х	
DZ2	Variation of peak Dpt with load	Х	Х	Х	Х	
, DZ3	Variation of peak Dpt with camber	Х	Х	Х	Х	
DZ4	Variation of peak Dpt with camber squared	Х	Х	Х	Х	
DZ6	Peak residual torque Dmr = Dmr/(Fz*R0)	Х	Х	Х	Х	
DZ7	Variation of peak factor Dmr with load	Х	Х	Х	Х	
DZ8	Variation of peak factor Dmr with camber	Х	Х	Х	Х	
QDZ9	Variation of peak factor Dmr with camber and	X	X	X	X	
4520	load	~	~			
DZ10	Variation of peak factor Dmr with camber	Х	х	х	х	
10010	squared	~			~	
DZ11	Variation of Dmr with camber squared and load	х	х	х	х	
JEZ1	Trail curvature Ept at Fznom	x	x	X	X	
JEZ2	Variation of curvature Ept at 121011	x	x	x	x	
JEZ3	Variation of curvature Ept with load squared	x	X	X	x	
		x	X	X	X	
QEZ4	Variation of curvature Ept with sign of Alpha-t		X	X	X	
QEZ5	Variation of Ept with camber and sign Alpha-t	Х		X		
QHZ1	Trail horizontal shift Sht at Fznom	Х	X	X	X	
QHZ2	Variation of shift Sht with load	Х	X		X	
QHZ3	Variation of shift Sht with camber	Х	X	X	X	
QHZ4	Variation of shift Sht with camber and load	Х	X	Х	Х	2
PPZ1	Effect of inflation pressure on length of pneumatic trail	Х	Х	Х		
PPZ2	Influence of inflation pressure on residual	Х	х	х		
	aligning torque	~				
SSZ1	Nominal value of s/R0: effect of Fx on Mz	х	х	х	х	
SSZ1	Variation of distance s/R0 with Fy/Fznom	x	X	X	X	
SSZ2	Variation of distance s/R0 with r y/r zhom	x	X	X	x	
	Variation of distance s/R0 with load and camber	x	x	X	X	
SSZ4		^	^	^	^	
ŢZ1	Gyroscopic torque constant					1
	[TURNSLIP_COEFFICIENTS]					
PDXP1	Peak Fx reduction due to spin parameter	Х	X	Х	X	
PDXP2	Peak Fx reduction due to spin with varying load	Х	Х	Х	Х	
	parameter					
PDXP3	Peak Fx reduction due to spin with kappa	Х	Х	Х	Х	
	parameter					
PDXP4	Peak Fx reduction due to longitudinal spin	Х				
	parameter					
PKYP1	Cornering stiffness reduction due to spin	Х	Х	Х	Х	
PDYP1	Peak Fy reduction due to spin parameter	Х	Х	Х	Х	
PDYP2	Peak Fy reduction due to spin with varying load	Х	Х	Х	Х	
	parameter					
PDYP3	Peak Fy reduction due to spin with alpha	Х	Х	Х	Х	
	parameter	-		-	-	

Version 2212

NAME	DESCRIPTION		FITTYP			
		70	62	61	60	
PDYP4	Peak Fy reduction due to square root of spin parameter	Х	Х	Х	X	
PDYP5	Peak Fy reduction due to spin parameter	Х				
PDYP6	Peak Fy reduction due to lateral spin parameter	Х				
PHYP1	Fy-alpha curve lateral shift limitation	Х	Х	Х	Х	
РНҮР2	Fy-alpha curve maximum lateral shift	Х	Х	Х	Х	
	parameter					
РНҮРЗ	, Fy-alpha curve maximum lateral shift varying	Х	Х	Х	Х	
	with load parameter					
PHYP4	Fy-alpha curve maximum lateral shift	Х	Х	Х	Х	
	parameter					
PECP1	Camber w.r.t. spin reduction factor parameter	Х	Х	Х	х	
	in camber stiffness					
PECP2	Camber w.r.t. spin reduction factor varying with	Х	х	х	x	
	load parameter in camber stiffness					
QDTP1	Pneumatic trail reduction factor due to turn slip	Х	х	Х	x	
4	parameter					
QCRP1	Turning moment at constant turning and zero	Х	х	х	x	
<i>М</i> .О.101 Т	forward speed parameter	~	~			
QCRP2	Turn slip moment (at alpha=90deg) parameter	Х	х	Х	x	
	for increase with spin					
QBRP1	Residual (spin) torque reduction factor	Х	х	х	x	
	parameter due to side slip	~	~			
QDRP1	Turn slip moment peak magnitude parameter	Х	х	х	х	
QDRP3	Dependency of the turn slip transition curvature	X				
QDIM C	at zero forward speed on load	~				
QDRP4	Turn slip transition curvature at zero forward	Х				
	speed and Fznom	~				
FREQ_SVLP	Low pass filter cut off frequency for filtered	Х				
	steer rate and velocities	~				
QDRPA	Drop magnitude during steer hold	Х				
QDRPR	Drop rate input during steer hold	X				
QDRPMIN	Gain limit for numerical stability during steer	X				
42	hold					
DPSIMIN	Steer rate threshold for noise filtering and steer	Х				
	hold					
VXYMIN	Velocity threshold for noise filtering and steer	Х				
	hold					
	[TVX_COEFFICIENTS]					
PPT1	Nominal temperature for nominal inflation	Х				
	pressure					
PKXT1	Asymptotic scaling for CFk vs T at T infinite	Х				
PKXT2	Exponential gain for CFk vs T	X				
PKXT3	Exponential gain for CFk vs T, linear	X				
	dependency on Fz					
PKXT4	Exponential gain for CFk vs T, quadratic	Х				
	dependency on Fz	~				
PKXT5	Nominal tread bulk temperature at nominal	Х				
	load for CFk vs T					1

Version 2212

NAME	DESCRIPTION		FITTYP				
		70	62	61	60	6	
PKXT6	Load dependency of nominal tread bulk	Х					
	temperature for CFk vs T						
PKXV1	Gain for CFk vs Vx	Х					
PKXV2	CFk at Vx - > 0 and nominal load	Х					
PKXV3	Load dependendy for CFk at Vx - > 0	Х					
PKYT1	Asymptotic scaling for CFa vs T at T infinite	Х					
PKYT2	Exponential gain for CFa vs T	X					
РКҮТЗ	Exponential gain for CFa vs T, linear	X					
I KI I O	dependency on Fz	Λ					
		Х					
PKYT4	Exponential gain for CFa vs T, quadratic	^					
	dependency on Fz	v					
РКҮТ5	Nominal tread bulk temperature at nominal	Х					
	load for CFa vs T						
РКҮТ6	Load dependency of nominal tread bulk	Х					
	temperature for CFa vs T						
PKYV1	Gain for CFa vs Vx	Х					
PKYV2	CFa at Vx - $>$ 0 and nominal load	Х					
РКҮVЗ	Load dependendy for CFa at Vx - > 0	Х					
PDXT1	Maximum mux(T)	Х					
PDXT2	Temperature at which the mux(T) occurs	X					
PDXT3	Nominal flash temperature at nominal load for	X					
DATO	mux(T)	~					
PDXT4	Load dependency of nominal flash temperature	Х					
	for mux(T)						
PDXT5	Smoothness of the transient from the maximum	Х					
	the minimum mux(T)						
PDXV1	Dependency of the flash temperature for	Х					
DAVI	mux(T) on Vx	~					
איזערר		Х					
PDYT1	Maximum muy(T)						
PDYT2	Temperature at which the muy(T) occurs	Х					
PDYT3	Nominal flash temperature at nominal load for muy(T)	Х					
PDYT4	Load dependency of nominal flash temperature	Х					
	for muy(T)						
PDYT5	Smoothness of the transient from the maximum	Х					
	the minimum muy(T)						
PDYV1	Dependency of the flash temperature for	Х					
	muy(T) on Vx						
PEXT1	Dependency of Ex on T for positive slip	Х					
PEXT2	Load dependency of Ex on T for positive slip	X					
PEXT3	Dependency of Ex on T for negative slip	x					
	Load dependency of Ex on T for negative slip	x					
PEXT4							
PEXV1	Dependency of Ex on Vx	Х					
PEYT1	Dependency of Ey on T for positive slip	Х					
PEYT2	Load dependency of Ey on T for positive slip	Х					
PEYT3	Dependency of Ey on T for negative slip	Х					
PEYT4	Load dependency of Ey on T for negative slip	Х					
PEYV1	Dependency of Ey on Vx	Х					
QRR_EM	Tread rubber elasticity storage modulus	Х					
, _)RR_EL	Tread rubber elasticity loss factor	Х					
QRR_VX	Rolling resistance dependency on Vx	Х					

NAME	DESCRIPTION		FITTYP				
		70	62	61	60	6	
CPRHO	Tire specific heat capacity per volume	X					
LAMBDA_TR	Heat conductivity treads	Х					
LAMBDA_BL	Heat conductivity belt	Х					
HCV_IA	Convection liner inner air	Х					
HCV_RM	Convection rim inner air	Х					
HCV_AA_NOM	Convection treads ambient air at V0	Х					
HCV_AA_VX	Convection treads ambient air Vx dependency	Х					
HCV_TR	Convection treads road	Х					
ETATR1	Partition frictional power road and tread	Х					
ETATR2	Partition frictional power dependency on Fz	Х					
ETATR3	Partition frictional power dependency on Tt	Х					
HCV_TR_VX	Convection treads road Vx dependency	Х					
ALSL	Longitudinal slip correction	Х					

4.3.7 Version History

To enable the use of old Tire Property Files, MF-Tyre/MF-Swift is backward compatible with older versions. Tire Property Files generated for these tire models will work with MF-Tyre/MF-Swift 2212 and will give the same simulation results as before. The version history is presented in figure 4.9 below.

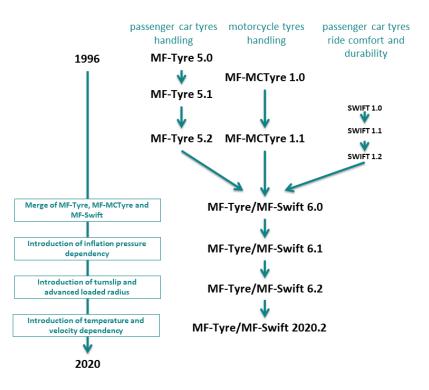


Figure 4.9: Version history of MF-Tyre/MF-Swift

The built-in estimation procedure (recall section 4.3.3), allows the use of an existing MF-Tyre 5.2 Tire Property File for simulations including turn slip, rigid ring dynamics and tire enveloping behavior, thus already benefiting from the new functionality available in MF-Tyre/MF-Swift 2212.

FITTYP

The selection of the appropriate set of Magic Formula equations is based on the parameter FITTYP in the [MODEL] section of the Tire Property File. The following conventions apply:

FITTYP = 5	MF-Tyre 5.0, 5.1 Magic Formula equations
FITTYP = 6	MF-Tyre 5.2 Magic Formula equations
FITTYP = 21	MF-Swift 1.x Magic Formula equations (based on MF-Tyre 5.2)
FITTYP = 51	MF-MCTyre 1.0 Magic Formula equations
FITTYP = 52	MF-MCTyre 1.1 Magic Formula equations
FITTYP = 60	MF-Tyre 6.0 Magic Formula equations
FITTYP = 61	MF-Tyre 6.1 Magic Formula equations
FITTYP = 62	MF-Tyre 6.2 Magic Formula equations
FITTYP = 70	MF-Tyre 6.2 Magic Formula equations + Temperature & Velocity model

Note: MF-Tyre/MF-Swift 2212 only accepts the following FITTYP values:

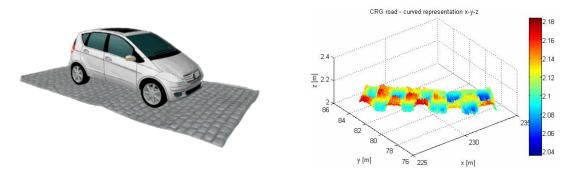
- FITTYP = 6
- FITTYP = 60
- FITTYP = 61
- FITTYP = 62
- FITTYP = 70

It will exit with an error for all other values of the FITTYP parameter.

4.4 Road Surface Definition

Besides the tire parameters, the tire model requires a road (surface) definition to be able to compute the tire output. As described the Road method section 4.2.1, the tire model supports a number of ways to define the road (surface) definition. These methods are the topic of this chapter and are explained in more detail in each section.

4.4.1 Default Flat Road


The default flat road surface has a constant road height (z = 0 [m] in the global axis system) and constant surface conditions, i.e. friction coefficients of 1 in x- and y-direction and zero road curvature.

Hence it is currently not possible to alter these conditions.

There is no need to specify a road data file.

4.4.2 OpenCRG Road

The OpenCRG Road is the implementation of the interface between MF-Tyre/MF-Swift and OpenCRG, maintained by Association for Standardization of Automation and Measuring Systems, Germany.

OpenCRG

OpenCRG is an initiative to provide a unified approach to represent 3D road data in vehicle simulations. The motivation is that simulation applications of vehicle handling, ride comfort, and durability load profiles ask for a reliable and efficient road representation. OpenCRG is based on CRG, Curved Regular Grid, developed by Daimler, which is made available to everybody.

The provided free material includes an efficient C-API implementation to evaluate the recorded 3D surface information and some Matlab functions to handle the CRG road data files.

Documentation The material for OpenCRG, including documentation, source code and tools, can be found on the OpenCRG website, in the section Download, using the links:

- User Manual
- · OpenCRG tools (C-API and MATLAB)

License OpenCRG is licensed under the Apache License, version 2.0. The License Conditions may be found in the in MF-Tyre/MF-Swift installation folder.

Invitation The founders invite the community to share experiences and would be pleased to have further contributions to complement and extend their initial work.

CRG

<u>Curved Regular Grid</u>, represents road elevation data close to an arbitrary road center line. The road is represented as a (curved) reference line, and a regular elevation grid, see figure 4.10 below.

This approach results in improved storage efficiency (smaller road data files), and faster elevation evaluation, with respect to other methods.

Note: The start of the CRG track is, by default, translated to the origin. This can be overruled by including an (empty) "\$ROAD_CRG_MODS" block.

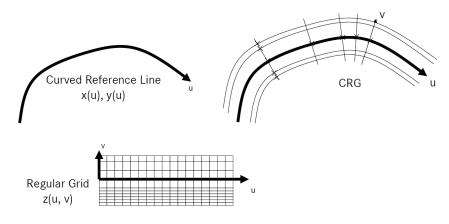


Figure 4.10: Curved Regular Grid

Curved Reference Line The Curved Reference Line is defined in the base plane (usually x,y) by setting the direction (=heading / yaw angle). Optionally, a pitch and bank angle can be defined to represent the hilliness and cross slope.

Regular Elevation Grid The Regular Elevation Grid, which is locally orthogonal, is a special form of Regular Grid, or Curvilinear or Structured Grid. It defines the elevation in the proximity of the reference line. The columns are longitudinal cuts that are parallel to the reference line. The rows are lateral cuts orthogonal to the reference line.

Creation

OpenCRG files (*.crg) can be easily created in MATLAB with routines delivered with MF-Tyre/MF-Swift. Documentation about OpenCRG can be found in the installation at:

simcenter_tire > mftyre_mfswift-simulink-2212 > OpenCRG > doc

4.4.3 External Road

With the external road selector, the road surface is defined in the VDS package coupled to MF-Tyre/MF-Swift.

MF-Tyre/MF-Swift will limit the user-defined road surface friction values to the interval (0,2].

See the manuals of the specific VDS package on how to define the road surface.

4.4.4 Road model numerical limitations

While reading data from either OpenCRG or External roads, the following limits are applied.

- 1. Road longitudinal friction and
- 2. lateral friction are limited to the interval [1e-5, 2.0].
- 3. Road curvature is limited to the interval [-2.0, 2.0].

A warning is issued when road model data exceeds one of the above limits. Only the first time a limit is exceeded events triggers a warning, repeated occurences are ignored.

4.5 Tire Model Output

The MF-Tyre/MF-Swift is offered as a force element which can be connected to a simulation package.

4.5.1 Feedback to Simulation Package

The primary feedback of the tire model to the simulation package consists of the tire force and moment vector on the wheel.

These primary feedback components are stored in the FORCE and TORQUE arrays which are returned by the library. They are expressed with respect to the fixed (i.e. non-rotating) wheel-carrier reference frame with an origin at the wheel center. The

x-axis is in the wheel plane and parallel to the road plane and pointing forward;

y-axis is perpendicular to the wheel plane;

z-axis is perpendicular to the x- and y-axis and pointing upwards (see section 4.1.3).

These arrays contain the following data :

FORCE	Description	Unit
F_{xc}	Component of the tire force along the x-axis of the wheel-carrier reference frame	[N]
F_{yc}	Component of the tire force along the y-axis of the wheel-carrier reference frame	[N]
F_{zc}	Component of the tire force along the z-axis of the wheel-carrier reference frame	[N]

MOMENT	Description	Unit
M_{xc}	Component of the tire moment along the x-axis of the wheel-carrier reference frame	[Nm]
M_{yc}	Component of the tire moment along the y-axis of the wheel-carrier reference frame	[Nm]
M_{zc}	Component of the tire moment along the z-axis of the wheel-carrier reference frame	[Nm]

4.5.2 Post Processing Signals

Various signals are available for post-processing (these are stored in the VARINF-array). The availability may be dependent on the implementation in the simulation package.

Depending on this implementation the signals are selected by means of a keyword, signal number or by other methods. In the tables below the available signals are listed.

Array Index	Variable	Long name	Description	Unit
	Ті	re contact forces/moments	in the contact point	
1	F_{xw}	contact point force	longitudinal force	[N]
2	F_{yw}	longitudinal contact point force	in W axis system lateral force	[N]
3	F_{zw}	lateral contact point force	in W axis system vertical force	[N]
4	M_{xw}	vertical contact point moment	in W axis system overturning moment	[Nm]
5	M_{yw}	roll contact point moment	in W axis system rolling resistance moment	[Nm
	-	pitch	in W axis system	-
6	M_{zw}	contact point moment yaw	self-aligning moment in W axis system	[Nm
		Slip quantil	ies	
7	κ	slip ratio longitudinal	longitudinal slip	[-]
8	α	slip angle lateral	side slip angle	[rad]
9	γ	inclination angle	inclination angle	[rad
10	ϕ	turn slip	turn slip	[1/m
		Additional tire of	outputs	
11	V_x	contact point velocity longitudinal	wheel contact center forward velocity	[m/s
12	R_l	loaded radius	loaded radius	[m]
13	R_e	effective rolling radius	effective rolling radius	[m]
14	$ ho_z$	deflection vertical	tire deflection	[m]
15	l_{cp}	contact patch length	tire contact length	[m]
16	t_p	pneumatic trail	pneumatic trail	[m]
17	μ_x	peak friction longitudinal	longitudinal friction coefficient	[-]
18	μ_y	peak friction lateral	lateral friction coefficient	[-]
19	σ_x	relaxation length longitudinal	longitudinal relaxation length $^{a)}$	[m]
20	σ_y	relaxation length lateral	lateral relaxation length $^{a)}$	[m]
21	V_{sx}	slip velocity longitudinal	longitudinal wheel slip velocity	[m/s
22	V_{sy}	slip velocity lateral	lateral wheel slip velocity	[m/s
23	V_z	compression velocity vertical	tire compression velocity	[m/s
24	$\dot{\psi}$	angular velocity yaw	tire yaw velocity	[rad/s
		Tire contact		
31	x_{cp}	contact point coordinate x	global x coordinate contact point	[m]
32	y_{xp}	contact point coordinate y	global y coordinate contact point	[m]

Array Index	Variable	Long name	Description	Unit
33	z_{cp}	contact point coordinate z	global z coordinate contact point	[m]
34	n_x	road normal component x	global x component road normal	[-]
35	n_y	road normal component y	global y component road normal	[-]
36	n_z	road normal component z	global z component road normal	[-]
37	h_{eff}	effective road height	effective road height	[m]
38	β_y	effective road slope	effective forward slope	[rad]
39	\dot{curv}	effective road curvature	effective road curvature	[1/m]
40	eta_x	effective road banking	effective road banking/road camber angle	[rad]
		Temperature and Vel	ocity model	
51	T_t	tread surface temperature	see figure 4.8	[K]
52	T_{tb}	tread bulk temperature	see figure 4.8	[K]
53	T_l	liner temperature	see figure 4.8	[K]
54	T_i	core air temperature	-	[K]
55	P_{infl}	inflation pressure	-	[N/m ²]

a) Contains a non-zero value if linear transient dynamics mode is selected and zero value otherwise.

Bibliography

- [1] H.B. Pacejka, *Tire and Vehicle Dynamics*, 3rd edition, Butterworth-Heinemann, Oxford 2012.
- [2] A. Riedel, J.J.M. van Oosten, Standard Tyre Interface, Release 1.4, Presented at 2nd International Colloquium on Tyre Models for Vehicle Dynamics Analysis, February 20-21 1997, Issued by the TYDEX - Working group.
- [3] I.J.M. Besselink, H.B. Pacejka, A.J.C. Schmeitz, S.T.H. Jansen, *The SWIFT tyre model: overview and applications*, Presented at the AVEC 2004: 7th International Symposium on Advanced Vehicle Control, 23-27 August 2004.
- [4] Lugaro, C., Alirezaei, M., Konstantinou, I., and Behera, A., A Study on the Effect of Tire Temperature and Rolling Speed on the Vehicle Handling Response, SAE Technical Paper 2020-01-1235, 2020, doi:10.4271/2020-01-1235
- [5] C. Lugaro, I. Konstantinou, M. Mazzeo, A Tire model extension for Predicting Temperature and Rolling Speed Influences on Tire performance, 2020 JSAE Annual Congress Proceedings, 20205081

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transformation to enable a digital enterprise where engineering, manufacturing and electronics design meets tomorrow. Our solutions help companies of all sizes create and leverage digital twins that provide organizations with new insights opportunities and levels of automation to drive automation For more information on Siemens Digital Industries products and services, visit siemens.com/software or follow us on LinkedIn, Twitter, Facebook and Instagram. Siemens Digital Industries Software -Where todays meets tomorrow

Headquarters:	+1 972 987 3000
Americas:	+1 314 264 8499
Europe:	+44 (0) 1276 413200
Asia-Pacific:	+852 2230 3333

Unpublished work Copyright 2022 Siemens. A list of relevant Siemens trademarks can be found here. Other trademarks belong to their respective owners.