In LAW94 Yeoh model, three parameters
C
10
,
C
20
,
C
30
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa
aaleaacaaIXaGaaGimaaqabaGccaaJSaGaam4qamaaBaaaleaacaaI
YaGaaGimaaqabaGccaaJSaGaam4qamaaBaaaleaacaaIZaGaaGimaa
qabaaaaa@3EBC@
defined same as analytical case.
D1 needs to be defined in the material card. If D1 is not defined in LAW94, then the
default Poisson’s ratio 0.495 is used.
Then 1/D1=17.94
is printed in the Starter output file.
This can be checked as follows:
図 4 .
G
=
2
C
10
=2*0
.18=0
.36
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiabg2
da9iaaikdacaWGdbWaaSbaaSqaaiaaigdacaaIWaaabeaakiaab2da
caqGYaGaaeOkaiaabcdacaqGUaGaaeymaiaabIdacaqG9aGaaeimai
aab6cacaqGZaGaaeOnaaaa@437F@
D
1
=
3
(
1
−
2
ν
)
G
(
1
+
ν
)
=
3
(
1
−
2
×
0
.495
)
0
.36
(
1
+
0
.495
)
=
0.055741
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaaig
dacqGH9aqpdaWcaaqaaiaabodadaqadaqaaiaaigdacqGHsislcaaI
YaGaeqyVd4gacaGLOaGaayzkaaaabaGaam4ramaabmaabaGaaGymai
abgUcaRiabe27aUbGaayjkaiaawMcaaaaacaqG9aWaaSaaaeaacaqG
ZaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabgEna0kaabcdacaqGUa
GaaeinaiaabMdacaqG1aaacaGLOaGaayzkaaaabaGaaeimaiaab6ca
caqGZaGaaeOnamaabmaabaGaaGymaiabgUcaRiaabcdacaqGUaGaae
inaiaabMdacaqG1aaacaGLOaGaayzkaaaaaiaab2daqaaaaaaaaaWd
biaaicdacaGGUaGaaGimaiaaiwdacaaI1aGaaG4naiaaisdacaaIXa
aaaa@5FF4@
1
D
1
=
17.94
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGaaeaaca
qGXaaabaGaaeiraiaaigdaaaGaeyypa0deaaaaaaaaa8qacaaIXaGa
aG4naiaac6cacaaI5aGaaGinaaaa@3D13@
C10 . . . . . . . . . . . . . . . . . . .= 0.1800000000000
C01 . . . . . . . . . . . . . . . . . . .= 0.000000000000
C20 . . . . . . . . . . . . . . . . . . .=-2.0000000000000E-03
C11 . . . . . . . . . . . . . . . . . . .= 0.000000000000
C02 . . . . . . . . . . . . . . . . . . .= 0.000000000000
C30 . . . . . . . . . . . . . . . . . . .= 5.0000000000000E-05
C21 . . . . . . . . . . . . . . . . . . .= 0.000000000000
C12 . . . . . . . . . . . . . . . . . . .= 0.000000000000
C03 . . . . . . . . . . . . . . . . . . .= 0.000000000000
1/D1 . . . . . . . . . . . . . . . . . .= 17.94001716615
1/D2 . . . . . . . . . . . . . . . . . .= 0.000000000000
1/D3 . . . . . . . . . . . . . . . . . .= 0.000000000000
Compare the above results, then show the difference with analytical results
especially in high deformed area.
図 5 .
In order to match the incompressible hyperelastic analytical results, the Poisson’s
ratio needs to be defined as close to 0.5 as possible, but can not be simply defined
as
ν
=0
.5
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maae
ypaiaabcdacaqGUaGaaeynaaaa@3A8A@
, which will lead to infinite small time step in
numerical computation. In this example
ν
=
0.49999995
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maae
ypaabaaaaaaaaapeGaaGimaiaac6cacaaI0aGaaGyoaiaaiMdacaaI
5aGaaGyoaiaaiMdacaaI5aGaaGynaaaa@4009@
is used. It shows
Radioss results are well matched with analytical results.
図 6 .
Since material incompressible is assumed in analytical calculation., Poisson’s ratio
closer to 0.5 is better, but the computation time will increase. Just one element
tension model from
ν
=0
.495
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maae
ypaiaabcdacaqGUaGaaeinaiaabMdacaqG1aaaaa@3BFD@
to
ν
=
0.49999995
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maae
ypaabaaaaaaaaapeGaaGimaiaac6cacaaI0aGaaGyoaiaaiMdacaaI
5aGaaGyoaiaaiMdacaaI5aGaaGynaaaa@4009@
run time is more than 20 times increased. In this
example, use
ν
=0
.4997
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maae
ypaiaabcdacaqGUaGaaeinaiaabMdacaqG5aGaae4naaaa@3CBB@
; therefore, set D1=0.003334.