This option gives an adiabatic pressure volume relation. With
γ
= 1 an isothermal condition can also be applied. It is possible to
define an incompressible sub-volume to model a volume partially filled with a liquid.
The
general equation is:
図 1 .
P
=
(
V
−
V
i
)
γ
=
P
0
(
V
0
−
V
i
)
γ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2
da9maabmaabaGaamOvaiabgkHiTiaadAfadaWgaaWcbaGaamyAaaqa
baaakiaawIcacaGLPaaadaahaaWcbeqaaiabeo7aNbaakiabg2da9i
aadcfadaWgaaWcbaGaaGimaaqabaGcdaqadaqaaiaadAfadaWgaaWc
baGaaGimaaqabaGccqGHsislcaWGwbWaaSbaaSqaaiaadMgaaeqaaa
GccaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaaaaa@49DE@
With
V
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIWaaabeaaaaa@37B7@
Initial volume
V
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaaaaa@37EB@
Incompressible volume
V
i
<
V
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa
aaleaacaWGPbaabeaakiabgYda8iaadAfadaWgaaWcbaGaam4Baaqa baaaaa@3AF4@
A viscosity
μ
can be used to reduce numerical oscillations.
If
μ
= 1 a critical damping (shell mass and volume stiffness) is used. The
viscous pressure
q
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
is:
図 2 .
q = μ
1
A
γ P
m
f a b r i c
V
d V
d t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2
da9iabeY7aTnaalaaabaGaaGymaaqaaiaadgeaaaWaaOaaaeaadaWc
aaqaaiabeo7aNjaadcfacaWGTbWaaSbaaSqaaiaadAgacaWGHbGaam
OyaiaadkhacaWGPbGaam4yaaqabaaakeaacaWGwbaaaaWcbeaakmaa
laaabaGaamizaiaadAfaaeaacaWGKbGaamiDaaaaaaa@4928@
Where,
m
f
a
b
r
i
c
=
A
ρ
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa
aaleaacaWGMbGaamyyaiaadkgacaWGYbGaamyAaiaadogaaeqaaOGa
eyypa0Jaamyqaiabeg8aYjaadshaaaa@4128@
Mass of fabric
A
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
Its surface
The applied pressure is
P
−
P
e
x
t
+
q
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgk
HiTiaadcfadaWgaaWcbaGaamyzaiaadIhacaWG0baabeaakiabgUca Riaadghaaaa@3D7B@
.
The specific inputs for this type are:
γ
μ
P
e
x
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGLbGaamiEaiaadshaaeqaaaaa@39D7@
P
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGVbaabeaaaaa@37EB@
V
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaaaaa@37EB@
If the deflation is considered (isenthalpic outflow computation), the initial mass
of gas, must also be input.
This monitored volume is typically used to model tire pressure
or simple fuel tank. For tire model
V
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaaaaa@37EB@
is zero and for fuel tank
V
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaaaaa@37EB@
is the fuel volume.
Thermodynamical Equations
The basic energy equation of the monitored volume can be written as:
図 3 .
d
E
M
o
n
i
t
o
r
e
d
V
o
l
u
m
e
=
−
P
d
(
V
−
V
i
)
−
d
H
o
u
t
Where,
E
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
Internal energy
P
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
Pressure
V
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
Monitored volume
V
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGPbaabeaaaaa@37EB@
Incompressible volume
H
o u t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa
aaleaacaWGVbGaamyDaiaadshaaeqaaaaa@39D6@
Outgoing enthalpy
When the adiabatic condition is applied and assuming a perfect gas:
図 4 .
P
=
(
γ
−
1
)
E
V
−
V
i
Where,
γ
is the gas constant. For air,
γ
= 1.4.
The two equations above allow the current volume to be determined. The energy and pressure can then be found.
External Work Variation
At the current time step,
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
, assume:
P
(
t
−
d
t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaabm
aabaGaamiDaiabgkHiTiaadsgacaWG0baacaGLOaGaayzkaaaaaa@3C1C@
E
(
t
−
d
t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaabm
aabaGaamiDaiabgkHiTiaadsgacaWG0baacaGLOaGaayzkaaaaaa@3C1C@
V
˜
=
V
−
V
i
δ
W (
t
) , E (
t
) , P (
t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWGxbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaiaaysW7
caWGfbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaiaaysW7ca
WGqbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@4752@
will be obtained as:
図 5 .
δ
W
=
P
(
t
)
+
P
(
t
−
d
t
)
2
(
V
˜
(
t
)
−
V
˜
(
t
−
d
t
)
)
be the variation of external work and from the adiabatic condition:
図 6 .
P
=
(
γ
−
1
)
E
V
˜
you have:
図 7 .
δ
W
=
(
γ
−
1
)
Δ
V
˜
2
[
E
(
t
)
V
˜
(
t
)
+
E
(
t
−
d
t
)
V
˜
(
t
−
d
t
)
]
Let:
E
=
E
(
t
−
d
t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2
da9iaadweadaqadaqaaiaadshacqGHsislcaWGKbGaamiDaaGaayjk aiaawMcaaaaa@3DE1@
V
˜
=
(
V
˜
(
t
)
−
V
˜
(
t
−
d
t
)
)
/
2
Δ
E
=
E
(
t
)
−
E
(
t
−
d
t
)
図 8 .
δ
W
=
(
γ
−
1
)
2
Δ
V
˜
V
˜
[
1
+
Δ
E
E
1
+
Δ
V
˜
2
V
˜
+
1
1
−
Δ
V
˜
2
V
˜
]
Hence, the external work is given by:
図 9 .
δ
W
≈
(
γ
−
1
)
E
Δ
V
˜
V
˜
[
1
+
Δ
E
2
E
]
Computing the energy from basic principles:
図 10 .
Δ
E
=
−
(
γ
−
1
)
E
Δ
V
˜
V
˜
[
1
+
Δ
E
2
E
]
−
Δ
H
o
u
t
Δ
H
o
u
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam
isamaaBaaaleaacaWGVbGaamyDaiaadshaaeqaaaaa@3B3C@
can be estimated from,
u (
t − d t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWG1bWaaeWaaeaacaWG0bGaeyOeI0IaamizaiaadshaaiaawIca
caGLPaaaaaa@3F22@
, the velocity at vent hole; this estimation will be
described hereafter.
The variation of internal energy
Δ
E
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadw eaaaa@37DA@
can be given by:
図 11 .
Δ
E
=
[
−
(
γ
−
1
)
E
Δ
V
˜
V
˜
−
Δ
H
o
u
t
]
[
1
−
(
γ
−
1
)
E
Δ
V
˜
2
V
˜
]
Therefore:
図 12 .
E
(
t
)
=
E
(
t
−
d
t
)
+
Δ
E
図 13 .
P
(
t
)
=
(
γ
−
1
)
E
(
t
)
V
˜
(
t
)
This pressure is then applied to the monitored volume to get:
New accelerations
New velocities
New geometry
New volume
Ready for next step evaluation
Venting
Venting, or the expulsion of gas from the volume, is assumed to be isenthalpic .
The flow is also assumed to be unshocked, coming from a large reservoir and through a small
orifice with effective surface area,
A
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
.
Conservation of enthalpy leads to velocity,
u
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG1baaaa@39D1@
, at the vent hole. The Bernouilli equation is then written as:
図 14 .
( monitored volume )
γ
γ − 1
P
ρ
=
γ
γ − 1
P
e x t
ρ
v e n t
+
u
2
2
(vent hole)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaab2
gacaqGVbGaaeOBaiaabMgacaqG0bGaae4BaiaabkhacaqGLbGaaeiz
aiaabccacaqG2bGaae4BaiaabYgacaqG1bGaaeyBaiaabwgacaGGPa
GaaGjbVpaalaaabaGaeq4SdCgabaGaeq4SdCMaeyOeI0IaaGymaaaa
daWcaaqaaiaadcfaaeaacqaHbpGCaaGaeyypa0ZaaSaaaeaacqaHZo
WzaeaacqaHZoWzcqGHsislcaaIXaaaamaalaaabaGaamiuamaaBaaa
leaacaWGLbGaamiEaiaadshaaeqaaaGcbaGaeqyWdi3aaSbaaSqaai
aadAhacaWGLbGaamOBaiaadshaaeqaaaaakiabgUcaRmaalaaabaGa
amyDamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaaGjbVlaabI
cacaqG2bGaaeyzaiaab6gacaqG0bGaaeiiaiaabIgacaqGVbGaaeiB
aiaabwgacaqGPaaaaa@6DAD@
Applying the adiabatic conditions:
図 15 .
P
ρ
γ
=
P
e
x
t
ρ
v
e
n
t
γ
Therefore, the exit velocity is given by:
図 16 .
u
2
=
2
γ
γ
−
1
P
ρ
(
1
−
(
P
e
x
t
P
)
γ
−
1
γ
)
The mass flow rate is given by:
図 17 .
m
˙
o
u
t
=
ρ
v
e
n
t
A
v
e
n
t
u
=
ρ
(
P
e
x
t
P
)
1
/
γ
A
v
e
n
t
u
The energy flow rate is given by:
図 18 .
E
˙
o
u
t
=
m
˙
E
ρ
V
˜
=
(
P
e
x
t
P
)
1
/
γ
A
v
e
n
t
u
E
V
˜
The vent hole area or scale factor area,
A
v
e
n
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWG2bGaamyzaiaad6gacaWG0baabeaaaaa@3AB9@
, can be defined in these ways:
a constant area taking into account a discharge coefficient
a variable area equal to the area of a specified surface, multiplied by a discharge
coefficient
a variable area equal to the area of the deleted elements within a specified surface,
multiplied by a discharge coefficient
Supersonic Outlet Flow
Vent pressure
P
v
e
n
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWG2bGaamyzaiaad6gacaWG0baabeaaaaa@3AC8@
is equal to external pressure
P
e
x
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGLbGaamiEaiaadshaaeqaaaaa@39D7@
for unshocked flow. For shocked flow,
P
v
e
n
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWG2bGaamyzaiaad6gacaWG0baabeaaaaa@3AC8@
is equal to critical pressure
P
c
r
i
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGJbGaamOCaiaadMgacaWG0baabeaaaaa@3ABD@
and
U
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EC@
is bounded to critical sound speed:
図 19 .
u
2
<
2
γ
+
1
c
2
=
2
γ
+
1
P
ρ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWG1bWaaWbaaSqabeaacaaIYaaaaOGaeyipaWZaaSaaaeaacaaI
YaaabaGaeq4SdCMaey4kaSIaaGymaaaacaWGJbWaaWbaaSqabeaaca
aIYaaaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaeq4SdCMaey4kaSIa
aGymaaaadaWcaaqaaiaadcfaaeaacqaHbpGCaaaaaa@496E@
And,
図 20 .
P
c
r
i
t
=
P
(
2
γ
+
1
)
γ
γ
−
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGJbGaamOCaiaadMgacaWG0baabeaakiabg2da9iaadcfa
daqadaqaamaalaaabaGaaGOmaaqaaiabeo7aNjabgUcaRiaaigdaaa
aacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiabeo7aNbqaaiab eo7aNjabgkHiTiaaigdaaaaaaaaa@476E@
P
v
e
n
t
=
max
(
P
c
r
i
t
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWG2bGaamyzaiaad6gacaWG0baabeaakiabg2da9iGac2ga
caGGHbGaaiiEamaabmaabaGaamiuamaaBaaaleaacaWGJbGaamOCai
aadMgacaWG0baabeaaaOGaayjkaiaawMcaaaaa@4506@
,
P
e
x
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGLbGaamiEaiaadshaaeqaaaaa@39D7@
)
Example: GAS Type
Some applications in
Radioss :
A tire model: The inputs are:
γ
= 1.4
μ
P
e
x
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGLbGaamiEaiaadshaaeqaaaaa@39D7@
= 105 Pa
P
i
n
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39C6@
= initial tire pressureThen, the pressure in the tire is
P
t
i
r
e
=
P
i
n
i
−
P
e
x
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWG0bGaamyAaiaadkhacaWGLbaabeaakiabg2da9iaadcfa
daWgaaWcbaGaamyzaiaadIhacaWG0baabeaakiabgkHiTiaadcfada
WgaaWcbaGaamyAaiaad6gacaWGPbaabeaaaaa@4477@
V
i
n
c
=
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa
aaleaacaWGPbGaamOBaiaadogaaeqaaOGaeyypa0JaaGimaaaa@3B90@
A fuel tank model if the sloshing effect is neglected Only if the sloshing effect is
neglected, pressure in a partial filled fuel tank can be modeled with a type GAS monitored
volume. Use the following input:
γ
= 1.4
μ
P
e
x
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGLbGaamiEaiaadshaaeqaaaaa@39D7@
= 105 Pa
P
i
n
i
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGPbGaamOBaiaadMgaaeqaaaaa@39C6@
= 105 Pa
V
i
n
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa
aaleaacaWGPbGaamOBaiaadogaaeqaaaaa@39C6@
= volume of fuel