Let
T
(
t
−
δ
t
)
the temperature,
P
(
t
−
δ
t
)
the pressure, and
V
(
t
−
δ
t
)
the volume of the airbag at time
t
−
δ
t
, and
m
(
i
)
the mass of gas
i
at time
t
−
δ
t
.
T
(
t
)
,
P
(
t
)
,
V
(
t
)
are respectively temperature, pressure and volume of the
airbag at time
t
, and
m
(i)
+
δ
m
in
(i)
-
δ
m
out
(i)
the mass of gas
i
at time
t
.
Using , the variation of total gas energy can be written as:
図 1 .
Δ
E
=
[
∑
i
(
m
(i)
+
δ
m
(
i
)
in
−
δ
m
(
i
)
out
)
(
e
(
i
)
c
o
l
d
+
∫
T
c
o
l
d
T
(
t
)
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
m
(
i
)
(
e
(
i
)
c
o
l
d
+
∫
T
c
o
l
d
T
(
t
−
δ
t
)
c
v
(
i
)
(
T
)
d
T
)
]
which can be written as:
図 2 .
On the other hand, the basic energy equation
Thermodynamical Equations ,
式 1 of the airbag and the expression of
enthalpy in
Thermodynamical Equations ,
式 5 gives:
図 3 .
Δ
E
=
[
∑
i
δ
m
(
i
)
i
n
(
e
(
i
)
c
o
l
d
+
R
M
(
i
)
T
(
i
)
i
n
+
∫
T
c
o
l
d
T
(
i
)
i
n
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
δ
m
(
i
)
o
u
t
(
e
(
i
)
c
o
l
d
+
R
M
(
i
)
T
(
i
)
o
u
t
+
∫
T
c
o
l
d
T
(
i
)
o
u
t
c
v
(
i
)
(
T
)
d
T
)
]
−
δ
W
Where,
δ
m
in
(i)
and
T
(
i
)
i
n
are characteristics of the inflator and are considered as
input to the problem.
δ
m
out
(i)
and
T
(
i
)
o
u
t
can be estimated from the velocity at vent hole
u
(
t
)
.
δ
W
is the variation of the external work. This estimation will be
described hereafter.
It comes from
式 1 and
式 2 :
図 4 .
∑
i
(
m
(
i
)
+
δ
m
(
i
)
i
n
−
δ
m
(
i
)
o
u
t
)
∫
T
(
t
−
δ
t
)
T
(
t
)
c
v
(
i
)
(
T
)
d
T
=
[
∑
i
δ
m
i
n
(
i
)
(
R
M
(
i
)
T
(
i
)
i
n
+
∫
T
(
t
−
δ
t
)
T
i
n
(
i
)
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
δ
m
o
u
t
(
i
)
(
R
M
(
i
)
T
o
u
t
(
i
)
+
∫
T
(
t
−
δ
t
)
T
o
u
t
(
i
)
c
v
(
i
)
(
T
)
d
T
)
]
−
δ
W
The variation of the external work can be written as:
図 5 .
δ
W
=
(
P
(
t
)
+
P
(
t
−
δ
t
)
)
2
(
V
(
t
)
−
V
(
t
−
δ
t
)
)
Using
Thermodynamical Equations ,
式 9 , the last expression can be
written as:
図 6 .
δ
W
=
1
2
(
[
∑
i
m
(
i
)
+
δ
m
(
i
)
i
n
−
δ
m
(
i
)
o
u
t
M
(
i
)
]
R
T
(
t
)
V
(
t
)
+
[
∑
i
m
(
i
)
M
(
i
)
]
R
T
(
t
−
δ
t
)
V
(
t
−
δ
t
)
)
(
V
(
t
)
−
V
(
t
−
δ
t
)
)
The last equation can be introduced to
式 4 :
図 7 .
[
∑
i
(
m
(
i
)
+
δ
m
(
i
)
i
n
−
δ
m
(
i
)
o
u
t
)
∫
T
(
t
−
δ
t
)
T
(
t
)
c
v
(
i
)
(
T
)
d
T
]
+
[
∑
i
m
(
i
)
+
δ
m
(
i
)
i
n
−
δ
m
(
i
)
o
u
t
M
(
i
)
]
R
T
(
t
)
V
(
t
)
−
V
(
t
−
δ
t
)
2
V
(
t
)
=
[
∑
i
δ
m
(
i
)
i
n
(
R
M
(
i
)
T
(
i
)
i
n
+
∫
T
(
t
−
δ
t
)
T
(
i
)
i
n
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
δ
m
(
i
)
o
u
t
(
R
M
(
i
)
T
(
i
)
o
u
t
+
∫
T
(
t
−
δ
t
)
T
(
i
)
o
u
t
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
m
(
i
)
M
(
i
)
]
R
T
(
t
−
δ
t
)
V
(
t
)
−
V
(
t
−
δ
t
)
2
V
(
t
−
δ
t
)
The first order approximation
∫
T
(
t
−
δ
t
)
T
(
t
)
c
v
(
i
)
(
T
)
≈
c
v
(
i
)
(
T
|
t
−
δ
t
)
(
T
(
t
)
−
T
(
t
−
δ
t
)
)
for each gas, which allows rewrite
式 7 as:
図 8 .
[
∑
i
(
m
(
i
)
+
δ
m
(
i
)
i
n
−
δ
m
(
i
)
o
u
t
)
c
v
(
i
)
(
T
|
t
−
δ
t
)
(
T
(
t
)
−
T
(
t
−
δ
t
)
)
]
+
[
∑
i
m
(
i
)
+
δ
m
(
i
)
i
n
−
δ
m
(
i
)
o
u
t
M
(
i
)
]
R
T
(
t
)
V
(
t
)
−
V
(
t
−
δ
t
)
2
V
(
t
)
=
[
∑
i
δ
m
(
i
)
i
n
(
R
M
(
i
)
T
(
i
)
i
n
+
∫
T
(
t
−
δ
t
)
T
(
i
)
i
n
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
δ
m
(
i
)
o
u
t
(
R
M
(
i
)
T
o
u
t
+
∫
T
(
t
−
δ
t
)
T
(
i
)
o
u
t
c
v
(
i
)
(
T
)
d
T
)
]
−
[
∑
i
m
(
i
)
M
(
i
)
]
R
T
(
t
−
δ
t
)
V
(
t
)
−
V
(
t
−
δ
t
)
2
V
(
t
−
δ
t
)
Which allows to determine the actual temperature
T
(
t
)
. The actual pressure then computed from the equation of
perfect gas (Thermodynamical Equations , 式 9 ).