This material law can be used to model low density closed cell polyurethane foams,
impactors, impact limiters. It can only be used with solid elements.
The main assumptions in this law are:
The components of the stress tensor are uncoupled until full volumetric compaction is
achieved (Poisson's ratio = 0.0).
The material is isotropic.
The effect of the enclosed air is considered via a separate Pressure versus Volumetric
Strain relation:
図 1 .
P
a
i
r
=
−
P
0
⋅
γ
1
+
γ
−
Φ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaWGHbGaamyAaiaadkhaaeqaaOGaeyypa0JaeyOeI0YaaSaa
aeaacaWGqbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaeq4SdCgaba
GaaGymaiabgUcaRiabeo7aNjabgkHiTiabfA6agbaaaaa@4730@
with:
図 2 .
γ
=
V
V
0
−
1
+
γ
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey
ypa0ZaaSaaaeaacaWGwbaabaGaamOvamaaBaaaleaacaaIWaaabeaa
aaGccqGHsislcaaIXaGaey4kaSIaeq4SdC2aaSbaaSqaaiaaicdaae qaaaaa@4071@
Where,
γ
Volumetric strain
Φ
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeaaa@3771@
Porosity
P
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa
aaleaacaaIWaaabeaaaaa@37B2@
Initial air pressure
γ
0
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS
baaSqaaiaaicdaaeqaaaaa@3884@
Initial volumetric strain
The structural stresses
σ
follow the Maxwell-Kelvin-Voight viscoelastic model (Generalized Kelvin-Voigt Model (LAW35) , 式 12 before the limiting yield curve is
reached):図 3 . Maxwell-Kelvin-Voight Model
図 4 .
σ
i
j
(
t
+
Δ
t
)
=
σ
i
j
(
t
)
+
[
E
ε
˙
i
j
−
(
E
+
E
t
η
σ
i
j
s
(
t
)
)
+
E
⋅
E
t
η
ε
i
j
]
⋅
Δ
t
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0
baaSqaaiaadMgacaWGQbaabaaaaOWaaeWaaeaacaWG0bGaey4kaSIa
euiLdqKaamiDaaGaayjkaiaawMcaaiabg2da9iabeo8aZnaaDaaale
aacaWGPbGaamOAaaqaaaaakmaabmaabaGaamiDaaGaayjkaiaawMca
aiabgUcaRmaadmaabaGaamyraiqbew7aLzaacaWaaSbaaSqaaiaadM
gacaWGQbaabeaakiabgkHiTmaabmaabaWaaSaaaeaacaWGfbGaey4k
aSIaamyramaaBaaaleaacaWG0baabeaaaOqaaiabeE7aObaacqaHdp
WCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGZbaaaOWaaeWaaeaacaWG
0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaaca
WGfbGaeyyXICTaamyramaaBaaaleaacaWG0baabeaaaOqaaiabeE7a
ObaacqaH1oqzdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLBbGaay
zxaaGaeyyXICTaeuiLdqKaamiDaaaa@6D87@
The Young's modulus used in the calculation is:
E
=
max
(
E
,
E
1
ε
˙
+
E
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2
da9iGac2gacaGGHbGaaiiEaiaacIcacaWGfbGaaiilaiaadweadaWg
aaWcbaGaaGymaaqabaGccuaH1oqzgaGaaiabgUcaRiaadweadaWgaa
WcbaGaaGOmaaqabaGccaGGPaaaaa@4377@
Yield is defined by a user-defined curve versus volumetric strain,
γ
, or
σ
=
A
+
B
(
1
+
C
γ
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey
ypa0JaamyqaiabgUcaRiaadkeadaqadaqaaiaaigdacqGHRaWkcaWG
dbGaeq4SdCgacaGLOaGaayzkaaaaaa@40C4@
Yield is applied to the principal structural stresses.
Unloading follows Young's modulus, which results in viscous unloading.
The full stress tensor is obtained by adding air pressure to the structual stresses:
図 5 .
σ
t o t a l
i j
(
t
) =
σ
i j
(
t
) −
P
a i r
δ
i j
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaW
baaSqabeaacaWG0bGaam4BaiaadshacaWGHbGaamiBaaaakmaaBaaa
leaacaWGPbGaamOAaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPa
aacqGH9aqpcqaHdpWCdaqhaaWcbaGaamyAaiaadQgaaeaaaaGcdaqa
daqaaiaadshaaiaawIcacaGLPaaacqGHsislcaWGqbWaaSbaaSqaai
aadggacaWGPbGaamOCaaqabaGccqaH0oazdaWgaaWcbaGaamyAaiaa
dQgaaeqaaaaa@5113@