The Gurson constitutive law
1 models progressive microrupture through void
nucleation and growth. It is dedicated to high strain rate elasto-viscoplastic porous
metals. A coupled damage mechanical model for strain rate dependent voided material is used.
The material undergoes several phases in the damage process as described in
図 1 .
図 1 . Damage Process for Visco-elastic-plastic Voided Materials
The constitutive law takes into account the void growth, nucleation and
coalescence under dynamic loading. The evolution of the damage is represented by the void
volume fraction, defined by:
図 2 .
f
=
V
a
−
V
m
V
a
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWGMbGaeyypa0ZaaSaaaeaacaWGwbWaaSbaaSqaaiaadggaaeqa
aOGaeyOeI0IaamOvamaaBaaaleaacaWGTbaabeaaaOqaaiaadAfada
WgaaWcbaGaamyyaaqabaaaaaaa@41AC@
Where,
V
a
,
V
m
Respectively, are the elementary apparent volume of the material and the
corresponding elementary volume of the matrix.
The rate of increase of the void volume fraction is given by:
図 3 .
f
=
f
g
+
f
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWGMbGaeyypa0JaamOzamaaBaaaleaacaWGNbaabeaakiabgUca
RiaadAgadaWgaaWcbaGaamOBaaqabaaaaa@3FC1@
The growth rate of voids is calculated by:
図 4 .
f
g
=
(
1
−
f
)
T
r
a
c
e
[
D
p
]
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWGMbWaaSbaaSqaaiaadEgaaeqaaOGaeyypa0ZaaeWaaeaacaaI
XaGaeyOeI0IaamOzaaGaayjkaiaawMcaaiaadsfacaWGYbGaamyyai
aadogacaWGLbWaamWaaeaacaWGebWaaWbaaSqabeaacaWGWbaaaaGc caGLBbGaayzxaaaaaa@4875@
Where,
T
r
a
c
e
[
D
p
]
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadk
hacaWGHbGaam4yaiaadwgadaWadaqaaiaadseadaahaaWcbeqaaiaa
dchaaaaakiaawUfacaGLDbaaaaa@3E65@
is the trace of the macroscopic plastic strain rate tensor.
The nucleation rate of voids is given by:
図 5 .
f
˙
n
=
f
N
S
N
2
π
e
−
1
2
(
ε
M
−
ε
N
S
N
)
2
ε
˙
M
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaca
WaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSba
aSqaaiaad6eaaeqaaaGcbaGaam4uamaaBaaaleaacaWGobaabeaakm
aakaaabaGaaGOmaiabec8aWbWcbeaaaaGccaWGLbWaaWbaaSqabeaa
cqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWaaSaaae
aacqaH1oqzdaWgaaadbaGaamytaaqabaWccqGHsislcqaH1oqzdaWg
aaadbaGaamOtaaqabaaaleaacaWGtbWaaSbaaWqaaiaad6eaaeqaaa
aaaSGaayjkaiaawMcaamaaCaaameqabaGaaGOmaaaaaaGccuaH1oqz
gaGaamaaBaaaleaacaWGnbaabeaaaaa@5095@
Where,
f
N
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWGobaabeaaaaa@37E0@
Nucleated void volume fraction
S
N
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWGobaabeaaaaa@37E0@
Gaussian standard deviation
ε
N
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS
baaSqaaiaad6eaaeqaaaaa@389C@
Nucleated effective plastic strain
ε
M
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS
baaSqaaiaad6eaaeqaaaaa@389C@
Admissible plastic strain
The viscoplastic flow of the porous material is described by:
図 6 .
{
Ω
e
v
p
=
σ
e
q
2
σ
M
2
+
2
q
1
f
∗
cosh
(
3
2
q
2
σ
m
σ
M
)
−
(
1
+
q
3
f
∗
2
)
i
f
σ
m
>
0
Ω
e
v
p
=
σ
e
q
2
σ
M
2
+
2
q
1
f
∗
−
(
1
+
q
3
f
∗
2
)
i
f
σ
m
≤
0
Where,
σ
e
q
von Mises is effective stress
σ
M
Admissible elasto-viscoplastic stress
σ
m
Hydrostatic stress
f
*
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa
aaleqabaGaaiOkaaaaaaa@37BC@
Specific coalescence function which can be written as:
図 7 .
{
Ω
e
v
p
=
σ
e
q
2
σ
M
2
+
2
q
1
f
*
cosh
(
3
2
q
2
σ
m
σ
M
)
−
(
1
+
q
3
f
*
2
)
if
σ
m
>
0
Ω
e
v
p
=
σ
e
q
2
σ
M
2
+
2
q
1
f
*
−
(
1
+
q
3
f
*
2
)
if
σ
m
≤
0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aadaGabaabaeqabaGaeuyQdC1aaSbaaSqaaiaadwgacaWG2bGaamiC
aaqabaGccqGH9aqpdaWcaaqaaiabeo8aZnaaDaaaleaacaWGLbGaam
yCaaqaaiaaikdaaaaakeaacqaHdpWCdaqhaaWcbaGaamytaaqaaiaa
ikdaaaaaaOGaey4kaSIaaGOmaiaadghadaWgaaWcbaGaaGymaaqaba
GccaWGMbWaaWbaaSqabeaacaGGQaaaaOGaci4yaiaac+gacaGGZbGa
aiiAamaabmaabaWaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGXbWaaS
baaSqaaiaaikdaaeqaaOWaaSaaaeaacqaHdpWCdaWgaaWcbaGaamyB
aaqabaaakeaacqaHdpWCdaWgaaWcbaGaamytaaqabaaaaaGccaGLOa
GaayzkaaGaeyOeI0YaaeWaaeaacaaIXaGaey4kaSIaamyCamaaBaaa
leaacaaIZaaabeaakiaadAgadaahaaWcbeqaaiaacQcacaaIYaaaaa
GccaGLOaGaayzkaaGaaGjbVlaaysW7caqGPbGaaeOzaiaaysW7cqaH
dpWCdaWgaaWcbaGaamyBaaqabaGccqGH+aGpcaaIWaaabaGaeuyQdC
1aaSbaaSqaaiaadwgacaWG2bGaamiCaaqabaGccqGH9aqpdaWcaaqa
aiabeo8aZnaaDaaaleaacaWGLbGaamyCaaqaaiaaikdaaaaakeaacq
aHdpWCdaqhaaWcbaGaamytaaqaaiaaikdaaaaaaOGaey4kaSIaaGOm
aiaadghadaWgaaWcbaGaaGymaaqabaGccaWGMbWaaWbaaSqabeaaca
GGQaaaaOGaeyOeI0YaaeWaaeaacaaIXaGaey4kaSIaamyCamaaBaaa
leaacaaIZaaabeaakiaadAgadaahaaWcbeqaaiaacQcacaaIYaaaaa
GccaGLOaGaayzkaaGaaGjbVlaaysW7caqGPbGaaeOzaiaaysW7cqaH
dpWCdaWgaaWcbaGaamyBaaqabaGccqGHKjYOcaaIWaaaaiaawUhaaa aa@96D4@
Where,
f
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWGJbaabeaaaaa@37F5@
Critical void volume fraction at coalescence
f
F
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWGgbaabeaaaaa@37D8@
Critical void volume fraction at ductile fracture
f
u
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG1baabeaaaaa@3807@
Corresponding value of the coalescence function
f
u
=
1
q
1
,
f
*
(
f
F
)
=
f
u
The variation of the specific coalescence function is shown in
図 2 .
図 8 . Variation of Specific Coalescence Function
The admissible plastic strain rate is computed as:
図 9 .
ε
˙
M
=
σ
:
D
p
(
1
−
f
)
σ
M
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacuaH1oqzgaGaamaaBaaaleaacaWGnbaabeaakiabg2da9maalaaa
baGaeq4WdmNaaiOoaiaadseadaahaaWcbeqaaiaadchaaaaakeaada
qadaqaaiaaigdacqGHsislcaWGMbaacaGLOaGaayzkaaGaeq4Wdm3a
aSbaaSqaaiaad2eaaeqaaaaaaaa@47F8@
Where,
σ
Cauchy stress tensor
σ
M
Admissible plastic stress
D
p
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaCa
aaleqabaGaamiCaaaaaaa@37E1@
Macroscopic plastic strain rate tensor which can be written in the case of the
associated plasticity as:図 10 .
D
p
=
λ
˙
∂
Ω
e
v
p
∂
σ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWGebWaaWbaaSqabeaacaWGWbaaaOGaeyypa0Jafq4UdWMbaiaa
daWcaaqaaiabgkGi2kabfM6axnaaBaaaleaacaWGLbGaamODaiaadc
haaeqaaaGcbaGaeyOaIyRaeq4Wdmhaaaaa@46CC@
with
Ω
e
v
p
the yield surface envelope. The viscoplastic multiplier is
deduced from the consistency condition:
図 11 .
Ω
e
v
p
=
Ω
˙
e
v
p
=
0
From this last expression, it is deduced that:
図 12 .
λ
˙
=
Ω
e
v
p
∂
Ω
e
v
p
2
∂
:
C
e
:
∂
Ω
e
v
p
∂
σ
−
∂
Ω
e
v
p
∂
σ
M
∂
σ
M
∂
ε
M
A
2
−
∂
Ω
e
v
p
∂
f
[
(
1
−
f
)
∂
Ω
e
v
p
∂
σ
:
I
+
A
1
A
2
]
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacuaH7oaBgaGaaiabg2da9maalaaabaGaaeyQdmaaBaaaleaacaWG
LbGaamODaiaadchaaeqaaaGcbaWaaSaaaeaacqGHciITcaqGPoWaaS
baaSqaaiaadwgacaWG2bGaamiCaaqabaaakeaacaaIYaGaeyOaIyla
aiaacQdacaWGdbWaaWbaaSqabeaacaWGLbaaaOGaaiOoamaalaaaba
GaeyOaIyRaaeyQdmaaBaaaleaacaWGLbGaamODaiaadchaaeqaaaGc
baGaeyOaIyRaeq4WdmhaaiabgkHiTmaalaaabaGaeyOaIyRaaeyQdm
aaBaaaleaacaWGLbGaamODaiaadchaaeqaaaGcbaGaeyOaIyRaeq4W
dm3aaSbaaSqaaiaad2eaaeqaaaaakmaalaaabaGaeyOaIyRaeq4Wdm
3aaSbaaSqaaiaad2eaaeqaaaGcbaGaeyOaIyRaeqyTdu2aaSbaaSqa
aiaad2eaaeqaaaaakiaadgeadaWgaaWcbaGaaGOmaaqabaGccqGHsi
sldaWcaaqaaiabgkGi2kaabM6adaWgaaWcbaGaamyzaiaadAhacaWG
WbaabeaaaOqaaiabgkGi2kaadAgaaaWaamWaaeaadaqadaqaaiaaig
dacqGHsislcaWGMbaacaGLOaGaayzkaaWaaSaaaeaacqGHciITcaqG
PoWaaSbaaSqaaiaadwgacaWG2bGaamiCaaqabaaakeaacqGHciITcq
aHdpWCaaGaaiOoaiaadMeacqGHRaWkcaWGbbWaaSbaaSqaaiaaigda
aeqaaOGaamyqamaaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaa aaaaa@86A0@
Where,
図 13 .
A
2
=
σ
:
δ
Ω
e
v
p
δ
σ
(
1
−
f
)
σ
M
;
A
1
=
f
N
S
N
2
π
e
−
1
2
(
ε
M
−
ε
N
S
N
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeq4WdmNaaiOoamaa
laaabaGaeqiTdqMaeuyQdC1aaSbaaSqaaiaadwgacaWG2bGaamiCaa
qabaaakeaacqaH0oazcqaHdpWCaaaabaGaaiikaiaaigdacqGHsisl
caWGMbGaaiykaiabeo8aZnaaBaaaleaacaWGnbaabeaaaaGccaGG7a
GaamyqamaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaamOz
amaaBaaaleaacaWGobaabeaaaOqaaiaadofadaWgaaWcbaGaamOtaa
qabaGcdaGcaaqaaiaaikdacqaHapaCaSqabaaaaOGaamyzamaaCaaa
leqabaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaam
aalaaabaGaeqyTdu2aaSbaaWqaaiaad2eaaeqaaSGaeyOeI0IaeqyT
du2aaSbaaWqaaiaad6eaaeqaaaWcbaGaam4uamaaBaaameaacaWGob
aabeaaaaaaliaawIcacaGLPaaadaahaaadbeqaaiaaikdaaaaaaaaa @63F7@