Johnson-Cook plasticity model is presented in
Johnson-Cook Plasticity Model (LAW2) . For
shell applications, a simple damage model can be associated to this law to take into account
the brittle failure. The crack propagation occurs in the plan of shell in the case of
mono-layer property and through the thickness if a multi-layer property is defined (
図 1 ).
図 1 . Damage Affected Material
The elastic-plastic behavior of the material is defined by Johnson-Cook model. However, the
stress-strain curve for the material incorporates a last part related to damage phase as
shown in
図 2 . The damage parameters are:
ε
t
1
Tensile rupture strain in direction 1
ε
m
1
Maximum strain in direction 1
dmax1
Maximum damage in direction 1
ε
f
1
Maximum strain for element deletion in direction 1
The element is removed if one layer of element reaches the failure tensile strain,
ε
f
1
. The nominal and effective stresses developed in an element
are related by:
図 2 .
σ
n
=
σ
e
f
f
(
1
−
d
)
Where,
0 < d < 1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaq1acaqGWa
GaaeiiaiaabYdacaqGGaGaaeizaiaabccacaqG8aGaaeiiaiaabgda aaa@3CA8@
Damage factor
The strains and the stresses in each direction are given by:
図 3 .
ε
1
=
σ
1
(
1
−
d
1
)
E
−
ν
σ
2
E
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiab
eo8aZnaaBaaaleaacaaIXaaabeaaaOqaamaabmaabaGaaGymaiabgk
HiTiaadsgadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaWG
fbaaaiabgkHiTmaalaaabaGaeqyVd4Maeq4Wdm3aaSbaaSqaaiaaik
daaeqaaaGcbaGaamyraaaaaaa@4B42@
図 4 .
ε
2
=
σ
2
E
−
ν
σ
1
E
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiab
eo8aZnaaBaaaleaacaaIYaaabeaaaOqaaiaadweaaaGaeyOeI0YaaS
aaaeaacqaH9oGBcqaHdpWCdaWgaaWcbaGaaGymaaqabaaakeaacaWG fbaaaaaa@4638@
図 5 .
γ
12
=
σ
12
(
1
−
d
1
)
G
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacqaHZoWzdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaa
aeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaWaaeWaae
aacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaIXaaabeaaaOGaayjk
aiaawMcaaiaadEeaaaaaaa@4688@
図 6 .
σ
1
=
E
(
1
−
d
1
)
[
1
−
(
1
−
d
1
)
ν
2
]
(
ε
1
+
ν
ε
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaa
dweadaqadaqaaiaaigdacqGHsislcaWGKbWaaSbaaSqaaiaaigdaae
qaaaGccaGLOaGaayzkaaaabaWaamWaaeaacaaIXaGaeyOeI0YaaeWa
aeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaaIXaaabeaaaOGaay
jkaiaawMcaaiabe27aUnaaCaaaleqabaGaaGOmaaaaaOGaay5waiaa
w2faaaaadaqadaqaaiabew7aLnaaBaaaleaacaaIXaaabeaakiabgU
caRiabe27aUjabew7aLnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaa wMcaaaaa@571A@
図 7 .
σ
2
=
E
[
1
−
(
1
−
d
1
)
ν
2
]
(
ε
2
+
(
1
−
d
1
)
ν
ε
1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaa
dweaaeaadaWadaqaaiaaigdacqGHsisldaqadaqaaiaaigdacqGHsi
slcaWGKbWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeqyV
d42aaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaaaamaabmaaba
GaeqyTdu2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSYaaeWaaeaacaaI
XaGaeyOeI0IaamizamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawM
caaiabe27aUjabew7aLnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaa wMcaaaaa@571B@
The conditions for these equations are:
0
<
d
<
1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY
da8iaadsgacqGH8aapcaaIXaaaaa@3A5C@
ε
=
ε
t
;
d = 0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaq1acaqGKb
Gaaeiiaiaab2dacaqGGaGaaeimaaaa@39F0@
ε
=
ε
m
;
d = 1
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaq1acaqGKb
Gaaeiiaiaab2dacaqGGaGaaeimaaaa@39F0@
A linear damage model is used to compute the damage factor in function of material
strain.
図 8 .
d =
ε −
ε
t
ε
m
−
ε
t
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacaWGKbGaeyypa0ZaaSaaaeaacqaH1oqzcqGHsislcqaH1oqzdaWg
aaWcbaGaamiDaaqabaaakeaacqaH1oqzdaWgaaWcbaGaamyBaaqaba
GccqGHsislcqaH1oqzdaWgaaWcbaGaamiDaaqabaaaaaaa@46C8@
The stress-strain curve is then modified to take into account the damage by
式 1 . Therefore:
図 9 .
σ = E
ε
m
− ε
ε
m
−
ε
t
(
ε −
ε
t
p
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf
MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi
ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8
qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9
q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake
aacqaHdpWCcqGH9aqpcaWGfbWaaSaaaeaacqaH1oqzdaWgaaWcbaGa
amyBaaqabaGccqGHsislcqaH1oqzaeaacqaH1oqzdaWgaaWcbaGaam
yBaaqabaGccqGHsislcqaH1oqzdaWgaaWcbaGaamiDaaqabaaaaOWa
aeWaaeaacqaH1oqzcqGHsislcqaH1oqzdaqhaaWcbaGaamiDaaqaai
aadchaaaaakiaawIcacaGLPaaaaaa@5058@
The softening condition is given by:
図 10 .
ε
m
−
ε
t
≤
ε
t
−
ε
t
p
The mathematical approach described here can be applied to the modeling of rivets. Predit
law in
Radioss allows achievement of this end by a simple model
where for the elastic-plastic behavior a Johnson-Cook model or a tabulated law (LAW36) may
be used.
図 11 . Stress-strain Curve for Damage Affected Material