Barlat's 3- parameter plasticity model is developed in F. Barlat, J. Lian
1 for modeling of sheet under plane stress assumption with
an anisotropic plasticity model. The anisotropic yield stress criterion for plane stress is
defined as:
図 1 .
F
=
a
|
K
1
+
K
2
|
m
+
a
|
K
1
−
K
2
|
m
+
c
|
2
K
2
|
m
−
2
(
σ
e
)
m
Where,
σ
e
is the yield stress,
a
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
and
c
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
are anisotropic material constants,
m
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
exponent and
K
1
and
K
2
are defined by:
図 2 .
K
1
=
σ
x
x
+
h
σ
y
y
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa
aaleaacaaIXaaabeaakiabg2da9maalaaabaGaeq4Wdm3aaSbaaSqa
aiaadIhacaWG4baabeaakiabgUcaRiaadIgacqaHdpWCdaWgaaWcba
GaamyEaiaadMhaaeqaaaGcbaGaaGOmaaaaaaa@4341@
K
2
=
(
σ
x
x
−
h
σ
y
y
2
)
2
+
p
2
(
σ
x
y
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa
aaleaacaaIYaaabeaakiabg2da9maakaaabaWaaeWaaeaadaWcaaqa
aiabeo8aZnaaBaaaleaacaWG4bGaamiEaaqabaGccqGHsislcaWGOb
Gaeq4Wdm3aaSbaaSqaaiaadMhacaWG5baabeaaaOqaaiaaikdaaaaa
caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiCam
aaCaaaleqabaGaaGOmaaaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaa
dIhacaWG5baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aaaeqaaaaa@4EE9@
Where,
h
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
and
p
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
are additional anisotropic material constants. All anisotropic
material constants, except for
p
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
which is obtained implicitly, are determined from Barlat width
to thickness strain ratio
R
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36DC@
from:
図 3 .
a
=
2
−
2
(
r
00
1
+
r
00
)
(
r
90
1
+
r
90
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2
da9iaaikdacqGHsislcaaIYaWaaOaaaeaadaqadaqaamaalaaabaGa
amOuamaaBaaaleaacaaIWaGaaGimaaqabaaakeaacaaIXaGaey4kaS
IaamOuamaaBaaaleaacaaIWaGaaGimaaqabaaaaaGccaGLOaGaayzk
aaWaaeWaaeaadaWcaaqaaiaadkfadaWgaaWcbaGaaGyoaiaaicdaae
qaaaGcbaGaaGymaiabgUcaRiaadkfadaWgaaWcbaGaaGyoaiaaicda
aeqaaaaaaOGaayjkaiaawMcaaaWcbeaaaaa@4AC5@
c
=
2
−
a
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2
da9iaaikdacqGHsislcaWGHbaaaa@3A54@
h
=
(
r
00
1
+
r
00
)
(
1
+
r
90
r
90
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2
da9maakaaabaWaaeWaaeaadaWcaaqaaiaadkfadaWgaaWcbaGaaGim
aiaaicdaaeqaaaGcbaGaaGymaiabgUcaRiaadkfadaWgaaWcbaGaaG
imaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaabmaabaWaaSaaaeaa
caaIXaGaey4kaSIaamOuamaaBaaaleaacaaI5aGaaGimaaqabaaake
aacaWGsbWaaSbaaSqaaiaaiMdacaaIWaaabeaaaaaakiaawIcacaGL PaaaaSqabaaaaa@4867@
The width to thickness ratio for any angle
φ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@3793@
can be calculated:
1 図 4 .
R
φ
=
2
m
(
σ
e
)
m
(
∂
F
∂
σ
x
x
+
∂
F
∂
σ
y
y
)
σ
φ
−
1
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacqaHvpGzaeqaaOGaeyypa0ZaaSaaaeaacaaIYaGaamyBamaa
bmaabaGaeq4Wdm3aaSbaaSqaaiaadwgaaeqaaaGccaGLOaGaayzkaa
WaaWbaaSqabeaacaWGTbaaaaGcbaWaaeWaaeaadaWcaaqaaiabgkGi
2kaadAeaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaamiEaiaadIhaae
qaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamOraaqaaiabgkGi2kab
eo8aZnaaBaaaleaacaWG5bGaamyEaaqabaaaaaGccaGLOaGaayzkaa
Gaeq4Wdm3aaSbaaSqaaiabew9aMbqabaaaaOGaeyOeI0IaaGymaaaa @580F@
Where,
σ
φ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS
baaSqaaiabeA8aQbqabaaaaa@3982@
is the uniaxial tension in the
φ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@3793@
direction. Let
φ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@3793@
= 45°,
式 4 gives an equation from which the
anisotropy parameter
p
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@
can be computed implicitly by using an iterative
procedure:
図 5 .
2
m
(
σ
e
)
m
(
∂
F
∂
σ
x
x
+
∂
F
∂
σ
y
y
)
σ
45
−
1
−
r
45
=
0
注: Barlat's law reduces to Hill's law when using
m
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@
=2
1 Barlat F. and Lian J.,
Plastic behavior and stretchability of sheet metals,
Part I: A yield function for orthoropic sheets under plane stress conditions ,
International Journal of Plasticity, Vol. 5, pp. 51-66, 1989.