/MAT/LAW122 (MODIFIED_LADEVEZE)

Blockフォーマットキーワード 直交異方性の弾性および塑性を考慮した、単純な一方向複合材プライモデル。ひずみ速度効果を含め、繊維とマトリックスの損傷が考慮されます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW122/mat_ID/unit_IDまたは/MAT/MODIFIED_LADEVEZE/mat_ID/unit_ID
mat_title
ρ i
E 1T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIXaGaamivaaqabaaaaa@3ACF@ E 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIYaaabeaaaaa@39F7@ E 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIYaaabeaaaaa@39F7@ G 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ G 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@
G 13 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ ν 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaikdaaeqaaaaa@3AC7@ ν 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaikdaaeqaaaaa@3AC7@ ν 31 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaikdaaeqaaaaa@3AC7@
E 1C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIXaGaaGimaiaadoeaaeqaaaaa@3B78@ γ ISH ITR IRES
σ Y0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMfacaaIWaaabeaaaaa@397B@ β M A
ε f ti MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyAaaaaaaa@3A99@ ε f tu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyDaaaaaaa@3AA5@ d f tu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGMbaabaGaamiDaiaadwhaaaaaaa@39E7@
ε f c i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyAaaaaaaa@3A99@ ε f c u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyDaaaaaaa@3AA5@ d f c u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGMbaabaGaamiDaiaadwhaaaaaaa@39E7@ IBUCK
IFUNCD1 d sat1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIXaaabeaaaaa@3A9A@ Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaaabeaaaaa@37B7@ Y C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbaabeaaaaa@37C5@ b
DMAX Y R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGsbaabeaaaaa@37D4@ Y S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGsbaabeaaaaa@37D4@
IFUNCD2 d sat2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIYaaabeaaaaa@3A9B@ Y 0 ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaaabeaakiaacEcaaaa@386C@ Y C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbaabeaakiaacEcaaaa@387A@
IFUNCD2C d sat2C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIYaGaam4qaaqabaaaaa@3B63@ Y 0C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaGaam4qaaqabaGccaGGNaaaaa@3934@ Y CC ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbGaam4qaaqabaGccaGGNaaaaa@3942@
ε ˙ 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGymaiaaigdaaeqaaaaa@3945@ D 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaaqabaaaaa@385E@ n 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaaqabaaaaa@3888@ D 11U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaiaadwfaaeqaaaaa@3938@ n 11U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaiaadwfaaeqaaaaa@3962@
ε ˙ 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGymaiaaigdaaeqaaaaa@3945@ D 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaaqabaaaaa@385E@ n 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaaqabaaaaa@3888@ D 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ n 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGOmaaqabaaaaa@3889@
ε ˙ R0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamOuaiaaicdaaeqaaaaa@3960@ D R0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGsbGaaGimaaqabaaaaa@3879@ n R0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGsbGaaGimaaqabaaaaa@38A3@ LTYPE11 LTYPE12 LTYPER0
FCUT

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

unit_ID (オプション)単位の識別子。

(整数、最大10桁)

mat_title 材料のタイトル

(文字、最大100文字)

ρ i 初期密度

(実数)

[ kg m 3 ]
E 1 T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIXaGaamivaaqabaaaaa@3ACF@ 引張における繊維方向1のヤング率

(実数)

[ Pa ]
E 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIYaaabeaaaaa@39F7@ マトリックス方向2のヤング率

(実数)

[ Pa ]
E 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIYaaabeaaaaa@39F7@ マトリックス方向3のヤング率

(実数)

[ Pa ]
G 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ 平面12のせん断係数

(実数)

[ Pa ]
G 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ 平面23のせん断係数

(実数)

[ Pa ]
G 13 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ 平面13のせん断係数

(実数)

[ Pa ]
ν 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaikdaaeqaaaaa@3AC7@ 平面12のポアソン比

(実数)

ν 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaikdaaeqaaaaa@3AC7@ 平面23のポアソン比

(実数)

ν 31 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBda WgaaWcbaGaaGymaiaaikdaaeqaaaaa@3AC7@ 平面31のポアソン比

(実数)

E 1 C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadw eakmaaBaaaleaacaaIXaGaaGimaiaadoeaaeqaaaaa@3B78@ 圧縮における繊維方向1のヤング率

(実数)

[ Pa ]
γ 弾性係数補正の圧縮係数

(実数)

P a 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca GGqbGaaiyyaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGym aaaaaaa@3B71@
ISH せん断マトリックス損傷フラグ
= 1(デフォルト)
線形関数
= 2
指数関数
= 3
表形式関数

(整数)

ITR 横方向マトリックス損傷フラグ
= 1(デフォルト)
線形関数
= 2
指数関数
= 3
表形式関数

(整数)

IRES マッピングアルゴリズムフラグを返します。
= 1
NICE(Next Increment Correct Error)陽的アルゴリズム
= 2(デフォルト)
切断面半陰的アルゴリズム

(整数)

σ Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMfacaaIWaaabeaaaaa@397B@ 初期降伏応力

デフォルト = 1020(実数)

[ Pa ]
β 硬化係数。

(実数)

[ Pa ]
M 硬化指数

(実数)

A せん断および横方向の塑性結合係数

(実数)

ε f t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyAaaaaaaa@3A99@ 繊維方向1の初期引張損傷ひずみ

デフォルト = 1020(実数)

ε f t u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyDaaaaaaa@3AA5@ 繊維方向1の引張損傷ひずみ

デフォルト = 2*1020(実数)

d f t u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGMbaabaGaamiDaiaadwhaaaaaaa@39E7@ 繊維方向1の引張損傷

(実数)

ε f c i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyAaaaaaaa@3A99@ 繊維方向1の初期圧縮損傷ひずみ

デフォルト = 1020(実数)

ε f c u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyDaaaaaaa@3AA5@ 繊維方向1の圧縮損傷ひずみ

デフォルト = 2*1020(実数)

d f c u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGMbaabaGaamiDaiaadwhaaaaaaa@39E7@ 繊維方向1の圧縮損傷

(実数)

IBUCK 圧縮での繊維の座屈損傷マトリックスのフラグ
= 1(デフォルト)
座屈効果による圧縮損傷なし
= 2
座屈効果による圧縮損傷アクティブ

(整数)

IFUNCD1 マトリックスせん断の表形式損傷関数の識別子

(整数)

d s a t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIXaaabeaaaaa@3A9A@ マトリックスせん断の指数関数的損傷の損傷飽和

(実数)

Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaaabeaaaaa@37B7@ 初期マトリックスせん断損傷しきい値 / 表形式損傷の横軸のスケールファクター

デフォルト = 1020または1.0(実数)

Y C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbaabeaaaaa@37C5@ マトリックスせん断損傷許容限界

(実数)

b せん断 / 横方向のマトリックス損傷結合係数

デフォルト = E 2 / G 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcgaqaa4 GaamyraSWaaSbaaeaacaaIYaaabeaaaOqaaiaadEeadaWgaaWcbaGa aGymaiaaikdaaeqaaaaaaaa@3BBB@ (実数)

DMAX 損傷の最大許容値

(実数)

Y R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGsbaabeaaaaa@37D4@ 要素せん断損傷値

デフォルト = 1020(実数)

Y S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGsbaabeaaaaa@37D4@ 繊維-マトリックス界面の脆性損傷限界

デフォルト = 1020(実数)

IFUNCD2 横方向引張マトリックスの表形式損傷関数の識別子

(整数)

d s a t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIYaaabeaaaaa@3A9B@ 横方向マトリックスの引張における指数関数的損傷の損傷飽和

(実数)

Y 0 ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaaabeaakiaacEcaaaa@386C@ 引張における初期横方向マトリックス損傷しきい値 / 表形式損傷の横軸のスケールファクター

デフォルト = 1020または1.0(実数)

Y C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbaabeaakiaacEcaaaa@387A@ 横方向マトリックスの引張における損傷許容限界

(実数)

IFUNCDC2 横方向圧縮マトリックスの表形式損傷(シェルのみ)関数の識別子

(整数)

d s a t 2 C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIYaGaam4qaaqabaaaaa@3B63@ 横方向マトリックスの圧縮における指数関数的損傷の損傷飽和(シェルのみ)

(実数)

Y 0 C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaGaam4qaaqabaGccaGGNaaaaa@3934@ 圧縮における初期横方向損傷しきい値 / 表形式損傷の横軸のスケールファクター(シェルのみ)

(実数)

Y C C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbGaam4qaaqabaGccaGGNaaaaa@3942@ 圧縮における横方向損傷許容限界(シェルのみ)

(実数)

ε ˙ 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGymaiaaigdaaeqaaaaa@3945@ 繊維方向1の参照ひずみ速度

デフォルト = 1.0(実数)

[ 1 s ]
D 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaaqabaaaaa@385E@ 繊維方向1におけるヤング率のひずみ速度依存性の最初のパラメータ

(実数)

n 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaaqabaaaaa@3888@ 繊維方向1におけるヤング率のひずみ速度依存性の2番目のパラメータ

(実数)

D 11 U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaiaadwfaaeqaaaaa@3938@ 繊維方向1における破断のひずみ速度依存性の最初のパラメータ

(実数)

n 11 U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaiaadwfaaeqaaaaa@3962@ 繊維方向1における破断のひずみ速度依存性の2番目のパラメータ

(実数)

ε ˙ 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGymaiaaigdaaeqaaaaa@3945@ せん断および横方向の参照ひずみ速度

デフォルト = 1.0(実数)

[ 1 s ]
D 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaaqabaaaaa@385E@ マトリックス横方向2におけるヤング率のひずみ速度依存性の最初のパラメータ

(実数)

n 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaaqabaaaaa@3888@ マトリックス横方向2におけるヤング率のひずみ速度依存性の2番目のパラメータ

(実数)

D 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaS baaSqaaiaaigdacaaIYaaabeaaaaa@39DB@ 平面12におけるせん断係数のひずみ速度依存性の最初のパラメータ

(実数)

n 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGOmaaqabaaaaa@3889@ 平面12におけるせん断係数のひずみ速度依存性の2番目のパラメータ

(実数)

ε ˙ R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaamOuaiaaicdaaeqaaaaa@3960@ 初期降伏応力の参照ひずみ速度。

デフォルト = 1.0(実数)

[ 1 s ]
D R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGsbGaaGimaaqabaaaaa@3879@ 初期降伏応力のひずみ速度依存性の最初のパラメータ

(実数)

n R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaWGsbGaaGimaaqabaaaaa@38A3@ 初期降伏応力のひずみ速度依存性の2番目のパラメータ

(実数)

LTYPE11 繊維方向1のひずみ速度依存則タイプ
= 1(デフォルト)
べき乗則
= 2
線形則
=3
対数則
= 4
双曲線正接則

(整数)

LTYPE12 せん断および横方向のひずみ速度依存則タイプ
= 1(デフォルト)
べき乗則
= 2
線形則
=3
対数則
= 4
双曲線正接則

(整数)

LTYPER0 初期降伏応力のひずみ速度依存則タイプ
= 1(デフォルト)
べき乗則
= 2
線形則
=3
対数則
= 4
双曲線正接則

(整数)

FCUT 相当ひずみ速度のカットオフ周波数

デフォルト= 5 kHz(実数)

[ 1 s ]

例(鋼材)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
Test unit
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW122/1/1
Steel                                                                                               
#        Init. dens.
              1.8E-9
#                 E1                  E2                  E3                 G12                 G23
              135000                1000                1000                4000                4000
#                G31                NU12                NU23                NU31
                4000                0.33                 0.1                0.33 
#                E1C               GAMMA                 ISH                 ITR                IRES
              138000              1.7E-4                   0                   0                   2
#              SIGY0                BETA                   M                   A
                  20              0.7986              0.5166                0.33
#            EPS_FTI             EPS_FTU                DFTU
               0.002              0.0025                 1.0
#            EPS_FCI             EPS_FCU                DCFU               IBUCK
              0.0104              0.0105                 1.0                   1
#            IFUNCD1               DSAT1                  Y0                  YC                   B
                                                       0.158                0.05                
#               DMAX                  YR                 YSP
                0.95              1.5811              1.0e20
#            IFUNCD2               DSAT2                 Y0P                 YCP
                                                       0.158                0.05 
#           IFUNCD2C              DSAT2C                Y0PC                YCPC
                                                       0.158                0.05 
#             EPSD11                 D11                 N11                D11U                N11U                                     

#             EPSD12                 D22                 N22                 D12                 N12                                     

#             EPSDR0                 DR0                 NR0             LTYPE11   LTYPE12   LTYPER0                                     

#               FCUT
 
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. 修正Ladevezeモデルでは、繊維が方向1の向きで、マトリックスが横方向2および3の向きの一方向複合材プライが考慮されます。この材料方向は、 x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ として識別されます(図 1)。シェルおよび厚肉シェル要素の場合、“面外”への横方向は、 z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ 軸に該当します。
    1. /MAT/LAW122で考慮される一方向プライとその材料方向


  2. 弾性挙動は直交異方性と見なされます。2D平面の応力条件では、シェルの応力とひずみの関係は以下のように表されます:

    σ x x = C 11 ε x x + C 12 ε x y σ y y = C 21 ε x x + C 22 ε x y σ x y = G 12 ε x y σ y z = κ G 23 ε y z σ z x = κ G 13 ε z x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe qaaiabeo8aZnaaBaaaleaacaWG4bGaamiEaaqabaGccqGH9aqpcaWG dbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabew7aLnaaBaaaleaaca WG4bGaamiEaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaigdacaaI Yaaabeaakiabew7aLnaaBaaaleaacaWG4bGaamyEaaqabaaakeaacq aHdpWCdaWgaaWcbaGaamyEaiaadMhaaeqaaOGaeyypa0Jaam4qamaa BaaaleaacaaIYaGaaGymaaqabaGccqaH1oqzdaWgaaWcbaGaamiEai aadIhaaeqaaOGaey4kaSIaam4qamaaBaaaleaacaaIYaGaaGOmaaqa baGccqaH1oqzdaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaeq4Wdm 3aaSbaaSqaaiaadIhacaWG5baabeaakiabg2da9iaadEeadaWgaaWc baGaaGymaiaaikdaaeqaaOGaeqyTdu2aaSbaaSqaaiaadIhacaWG5b aabeaaaOqaaiabeo8aZnaaBaaaleaacaWG5bGaamOEaaqabaGccqGH 9aqpcqaH6oWAcaWGhbWaaSbaaSqaaiaaikdacaaIZaaabeaakiabew 7aLnaaBaaaleaacaWG5bGaamOEaaqabaaakeaacqaHdpWCdaWgaaWc baGaamOEaiaadIhaaeqaaOGaeyypa0JaeqOUdSMaam4ramaaBaaale aacaaIXaGaaG4maaqabaGccqaH1oqzdaWgaaWcbaGaamOEaiaadIha aeqaaaaakiaawUhaaaaa@814D@ ここで、 C = 1 1 ν 12 ν 21 E 1 ν 12 E 2 ν 21 E 1 E 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaC4qaiabg2 da9maalaaabaGaaGymaaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWc baGaaGymaiaaikdaaeqaaOGaeqyVd42aaSbaaSqaaiaaikdacaaIXa aabeaaaaGcdaWadaqaauaabeqaciaaaeaacaWGfbWaaSbaaSqaaiaa igdaaeqaaaGcbaGaeqyVd42aaSbaaSqaaiaaigdacaaIYaaabeaaki aadweadaWgaaWcbaGaaGOmaaqabaaakeaacqaH9oGBdaWgaaWcbaGa aGOmaiaaigdaaeqaaOGaamyramaaBaaaleaacaaIXaaabeaaaOqaai aadweadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@50BA@

    ここで、 E 1 = E 1 T if ε x x 0 E 1 C 1 + γ E 1 C ε x x if ε x x < 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaoiaadweada WgaaWcbaGaaGymaaGdbeaacqGH9aqpdaGabaqaauaabeqacmaaaeaa caWGfbWcdaqhaaqaaiaaigdaaeaacaWGubaaaaGdbaGaaeyAaiaabA gaaeaacqaH1oqzlmaaBaaabaGaamiEaiaadIhaaeqaa4GaeyyzImRa aGimaaqaamaalaaabaGaamyraSWaa0baaeaacaaIXaaabaGaam4qaa aaa4qaaiaaigdacqGHRaWkcqaHZoWzcaWGfbWcdaqhaaqaaiaaigda aeaacaWGdbaaa4WaaqWaaeaacqaH1oqzlmaaBaaabaGaamiEaiaadI haaeqaaaGdcaGLhWUaayjcSdaaaaqaaiaabMgacaqGMbaabaGaeqyT du2cdaWgaaqaaiaadIhacaWG4baabeaaoiabgYda8iaaicdaaaaaca GL7baaaaa@5D04@ です。

    この繊維方向における圧縮ヤング率の非線形な進展は、繊維の微小座屈および乖離を表すのに使用されます。 κ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH6oWAaa a@391E@ は、シェルでのみ使用されるせん断係数で、プロパティで定義されます。

    3D応力条件(ソリッド要素と厚肉シェル)では、コンプライアンスの逆行列を使用して、応力とひずみを関連付けます:

    σ x x σ y y σ z z σ x y σ y z σ z x = 1 E 1 ν 12 E 1 ν 13 E 1 ν 12 E 1 1 E 2 ν 23 E 2 ν 13 E 1 ν 23 E 2 1 E 3 1 G 12 1 G 23 1 G 13 1 ε x x ε y y ε z z ε x y ε y z ε z x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qabeGbbaaaaeaacqaHdpWCdaWgaaWcbaGaamiEaiaadIhaaeqaaaGc baGaeq4Wdm3aaSbaaSqaaiaadMhacaWG5baabeaaaOqaaiabeo8aZn aaBaaaleaacaWG6bGaamOEaaqabaaakeaacqaHdpWCdaWgaaWcbaGa amiEaiaadMhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMhacaWG6b aabeaaaOqaaiabeo8aZnaaBaaaleaacaWG6bGaamiEaaqabaaaaaGc caGL7baacqGH9aqpdaWadaqaauaabeqagyaaaaaabaWaaSaaaeaaca aIXaaabaGaamyramaaBaaaleaacaaIXaaabeaaaaaakeaacqGHsisl daWcaaqaaiabe27aUnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaaca WGfbWaaSbaaSqaaiaaigdaaeqaaaaaaOqaaiabgkHiTmaalaaabaGa eqyVd42aaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaadweadaWgaa WcbaGaaGymaaqabaaaaaGcbaaabaaabaaabaGaeyOeI0YaaSaaaeaa cqaH9oGBdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyramaaBa aaleaacaaIXaaabeaaaaaakeaadaWcaaqaaiaaigdaaeaacaWGfbWa aSbaaSqaaiaaikdaaeqaaaaaaOqaaiabgkHiTmaalaaabaGaeqyVd4 2aaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadweadaWgaaWcbaGa aGOmaaqabaaaaaGcbaaabaaabaaabaGaeyOeI0YaaSaaaeaacqaH9o GBdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamyramaaBaaaleaa caaIXaaabeaaaaaakeaacqGHsisldaWcaaqaaiabe27aUnaaBaaale aacaaIYaGaaG4maaqabaaakeaacaWGfbWaaSbaaSqaaiaaikdaaeqa aaaaaOqaamaalaaabaGaaGymaaqaaiaadweadaWgaaWcbaGaaG4maa qabaaaaaGcbaaabaaabaaabaaabaaabaaabaWaaSaaaeaacaaIXaaa baGaam4ramaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGcbaaabaaaba aabaaabaaabaaabaWaaSaaaeaacaaIXaaabaGaam4ramaaBaaaleaa caaIYaGaaG4maaqabaaaaaGcbaaabaaabaaabaaabaaabaaabaWaaS aaaeaacaaIXaaabaGaam4ramaaBaaaleaacaaIXaGaaG4maaqabaaa aaaaaOGaay5waiaaw2faamaaCaaaleqakeaacqGHsislcaaIXaaaam aaceaabaqbaeqabyqaaaaabaGaeqyTdu2aaSbaaSqaaiaadIhacaWG 4baabeaaaOqaaiabew7aLnaaBaaaleaacaWG5bGaamyEaaqabaaake aacqaH1oqzdaWgaaWcbaGaamOEaiaadQhaaeqaaaGcbaGaeqyTdu2a aSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabew7aLnaaBaaaleaaca WG5bGaamOEaaqabaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadIha aeqaaaaaaOGaay5Eaaaaaa@A24E@

    圧縮における繊維方向のヤング率の同じ非線形性が使用されます。

  3. 繊維方向1(または x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ 軸)では、損傷が発生するまで挙動は純弾性のままです(詳細は下記)。ただし、横方向荷重およびせん断荷重を受けている状況では、マトリックスの塑性挙動が考慮されます。弾性限界は、ソリッドとシェルで異なる降伏関数により与えられます。
    • シェルの場合:
      f = σ x y 2 + A σ y y 2 σ Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9maakaaabaGaeq4Wdm3aa0baaSqaaiaadIhacaWG5baabaGaaGOm aaaakiabgUcaRiaadgeacqaHdpWCdaqhaaWcbaGaamyEaiaadMhaae aacaaIYaaaaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamywaaqa baaaaa@46B9@
    • ソリッドの場合:
      f = σ x y 2 + σ y z 2 + σ z y 2 + A σ y y 2 + σ z z 2 σ Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9maakaaabaGaeq4Wdm3aa0baaSqaaiaadIhacaWG5baabaGaaGOm aaaakiabgUcaRiabeo8aZnaaDaaaleaacaWG5bGaamOEaaqaaiaaik daaaGccqGHRaWkcqaHdpWCdaqhaaWcbaGaamOEaiaadMhaaeaacaaI YaaaaOGaey4kaSIaamyqamaabmaabaGaeq4Wdm3aa0baaSqaaiaadM hacaWG5baabaGaaGOmaaaakiabgUcaRiabeo8aZnaaDaaaleaacaWG 6bGaamOEaaqaaiaaikdaaaaakiaawIcacaGLPaaaaSqabaGccqGHsi slcqaHdpWCdaWgaaWcbaGaamywaaqabaaaaa@5917@

    ここで、 A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@ は結合係数で、等方性樹脂の場合、その値は0.33に設定できます。この式では、降伏関数は次のように定義されます:

    σ Y = σ Y 0 + β ε p m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMfaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMfa caaIWaaabeaakiabgUcaRiabek7aIjabew7aLnaaDaaaleaacaWGWb aabaGaamyBaaaaaaa@439F@

    これは、べき乗則に従った等方硬化を表します。硬化係数 β は、安定性の問題を回避するため、値 max E , 2 G 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bWaaeWaaeaacaWGfbGaaiilaiaaikdacaWGhbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@3EFF@ によって数値的に制限されます。

  4. 弾性や塑性と同様、損傷挙動は直交異方性と見なされます。3つの損傷変数、 d f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGMbaabeaaaaa@37F3@ d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@ 、および d ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacE caaaa@3787@ が定義されます。これらはそれぞれ、繊維破断、せん断マトリックス損傷、横方向マトリックス損傷を表します。
    • 繊維損傷 d f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGMbaabeaaaaa@37F3@ は、繊維方向1に沿った挙動に影響を与えます。引張荷重の条件下では、繊維損傷は次の式に従って進展します。
      d f = 0 if ε f e q ε f t i d f t u ε f e q ε f t i ε f t u ε f t i if ε f t i < ε f e q ε f t u 1 1 d f t u ε f t u ε f e q if ε f e q > ε f t u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGMbaabeaakiabg2da9maaceaabaqbaeqabmWaaaqaaiaa icdaaeaacaqGPbGaaeOzaaqaaiabew7aLnaaDaaaleaacaWGMbaaba GaamyzaiaadghaaaGccqGHKjYOcqaH1oqzdaqhaaWcbaGaamOzaaqa aiaadshacaWGPbaaaaGcbaGaamizamaaDaaaleaacaWGMbaabaGaam iDaiaadwhaaaGcdaWcaaqaaiabew7aLnaaDaaaleaacaWGMbaabaGa amyzaiaadghaaaGccqGHsislcqaH1oqzdaqhaaWcbaGaamOzaaqaai aadshacaWGPbaaaaGcbaGaeqyTdu2aa0baaSqaaiaadAgaaeaacaWG 0bGaamyDaaaakiabgkHiTiabew7aLnaaDaaaleaacaWGMbaabaGaam iDaiaadMgaaaaaaaGcbaGaaeyAaiaabAgaaeaacqaH1oqzdaqhaaWc baGaamOzaaqaaiaadshacaWGPbaaaOGaeyipaWJaeqyTdu2aa0baaS qaaiaadAgaaeaacaWGLbGaamyCaaaakiabgsMiJkabew7aLnaaDaaa leaacaWGMbaabaGaamiDaiaadwhaaaaakeaacaaIXaGaeyOeI0Yaae WaaeaacaaIXaGaeyOeI0IaamizamaaDaaaleaacaWGMbaabaGaamiD aiaadwhaaaaakiaawIcacaGLPaaadaWcaaqaaiabew7aLnaaDaaale aacaWGMbaabaGaamiDaiaadwhaaaaakeaacqaH1oqzdaqhaaWcbaGa amOzaaqaaiaadwgacaWGXbaaaaaaaOqaaiaabMgacaqGMbaabaGaeq yTdu2aa0baaSqaaiaadAgaaeaacaWGLbGaamyCaaaakiabg6da+iab ew7aLnaaDaaaleaacaWGMbaabaGaamiDaiaadwhaaaaaaaGccaGL7b aaaaa@91AF@
      ここで、 ε f t i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyAaaaaaaa@3A9A@ は損傷の開始時のひずみ、 ε f t u MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWG0bGaamyDaaaaaaa@3AA6@ は最終的なひずみ、 d f t u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGMbaabaGaamiDaiaadwhaaaaaaa@39E7@ は最終的な損傷値、 ε f e q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWGLbGaamyCaaaaaaa@3A92@ は次のように定義される相当繊維ひずみです:
      • シェルの場合:
        ε f e q = ε x x + ν 21 ε y y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWGLbGaamyCaaaakiabg2da9iabew7aLnaa BaaaleaacaWG4bGaamiEaaqabaGccqGHRaWkcqaH9oGBdaWgaaWcba GaaGOmaiaaigdaaeqaaOGaeqyTdu2aaSbaaSqaaiaadMhacaWG5baa beaaaaa@478F@
      • ソリッドの場合:
        ε f e q = 1 ν 23 ν 32 ε x x + ν 23 ν 31 + ν 21 ε y y + ν 21 ν 32 + ν 31 ε z z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadAgaaeaacaWGLbGaamyCaaaakiabg2da9maabmaabaGa aGymaiabgkHiTiabe27aUnaaBaaaleaacaaIYaGaaG4maaqabaGccq aH9oGBdaWgaaWcbaGaaG4maiaaikdaaeqaaaGccaGLOaGaayzkaaGa eqyTdu2aaSbaaSqaaiaadIhacaWG4baabeaakiabgUcaRmaabmaaba GaeqyVd42aaSbaaSqaaiaaikdacaaIZaaabeaakiabe27aUnaaBaaa leaacaaIZaGaaGymaaqabaGccqGHRaWkcqaH9oGBdaWgaaWcbaGaaG OmaiaaigdaaeqaaaGccaGLOaGaayzkaaGaeqyTdu2aaSbaaSqaaiaa dMhacaWG5baabeaakiabgUcaRmaabmaabaGaeqyVd42aaSbaaSqaai aaikdacaaIXaaabeaakiabe27aUnaaBaaaleaacaaIZaGaaGOmaaqa baGccqGHRaWkcqaH9oGBdaWgaaWcbaGaaG4maiaaigdaaeqaaaGcca GLOaGaayzkaaGaeqyTdu2aaSbaaSqaaiaadQhacaWG6baabeaaaaa@6C20@

      マトリックス座屈による繊維の圧縮損傷は、IBUCKフラグによってアクティブ化でき、同様の式で表されます。

      d f = 0 if ε f e q ε f c i d f c u ε f e q ε f c i ε f c u ε f c i if ε f c i < ε f e q ε f c u 1 1 d f c u ε f c u ε f e q if ε f e q > ε f c u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGMbaabeaakiabg2da9maaceaabaqbaeqabmWaaaqaaiaa icdaaeaacaqGPbGaaeOzaaqaamaaemaabaGaeqyTdu2aa0baaSqaai aadAgaaeaacaWGLbGaamyCaaaaaOGaay5bSlaawIa7aiabgsMiJkab ew7aLnaaDaaaleaacaWGMbaabaGaam4yaiaadMgaaaaakeaacaWGKb Waa0baaSqaaiaadAgaaeaacaWGJbGaamyDaaaakmaalaaabaWaaqWa aeaacqaH1oqzdaqhaaWcbaGaamOzaaqaaiaadwgacaWGXbaaaaGcca GLhWUaayjcSdGaeyOeI0IaeqyTdu2aa0baaSqaaiaadAgaaeaacaWG JbGaamyAaaaaaOqaaiabew7aLnaaDaaaleaacaWGMbaabaGaam4yai aadwhaaaGccqGHsislcqaH1oqzdaqhaaWcbaGaamOzaaqaaiaadoga caWGPbaaaaaaaOqaaiaabMgacaqGMbaabaGaeqyTdu2aa0baaSqaai aadAgaaeaacaWGJbGaamyAaaaakiabgYda8maaemaabaGaeqyTdu2a a0baaSqaaiaadAgaaeaacaWGLbGaamyCaaaaaOGaay5bSlaawIa7ai abgsMiJkabew7aLnaaDaaaleaacaWGMbaabaGaam4yaiaadwhaaaaa keaacaaIXaGaeyOeI0YaaeWaaeaacaaIXaGaeyOeI0IaamizamaaDa aaleaacaWGMbaabaGaam4yaiaadwhaaaaakiaawIcacaGLPaaadaWc aaqaaiabew7aLnaaDaaaleaacaWGMbaabaGaam4yaiaadwhaaaaake aadaabdaqaaiabew7aLnaaDaaaleaacaWGMbaabaGaamyzaiaadgha aaaakiaawEa7caGLiWoaaaaabaGaaeyAaiaabAgaaeaadaabdaqaai abew7aLnaaDaaaleaacaWGMbaabaGaamyzaiaadghaaaaakiaawEa7 caGLiWoacqGH+aGpcqaH1oqzdaqhaaWcbaGaamOzaaqaaiaadogaca WG1baaaaaaaOGaay5Eaaaaaa@A0AF@

      この繊維損傷は、次のように応力計算に影響します:

      σ x x d a m = 1 d f σ x x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadIhacaWG4baabaGaamizaiaadggacaWGTbaaaOGaeyyp a0ZaaeWaaeaacaaIXaGaeyOeI0IaamizamaaBaaaleaacaWGMbaabe aaaOGaayjkaiaawMcaaiabeo8aZnaaBaaaleaacaWG4bGaamiEaaqa baaaaa@46D2@

      図 2 は、繊維方向の引張 / 圧縮での予想される挙動を示しています。破線は、圧縮における非線形ヤング率を強調表示しています。
      2. 繊維損傷が応力に与える影響を表す、繊維方向の引張 / 圧縮試験


      注: 挙動は、繊維方向に沿って純弾性で損傷します。
    • せん断マトリックス損傷 d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@ は、マトリックスと繊維間の剥離を表すために導入されています。その進展は、Lemaitreタイプの損傷モデルでよく使用される、エネルギー解放率の影響を受けます。このモデルでは、2つの弾性エネルギー率が考慮されます。
      • シェルの場合:
        Z d = 1 2 σ 12 2 G 12 + σ 13 2 G 13 Z d ' = 1 2 σ 22 + 2 E 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGAb WaaSbaaSqaaiaadsgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaadaqadaqaamaalaaabaGaeq4Wdm3aa0baaSqaaiaaigdaca aIYaaabaGaaGOmaaaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaaikda aeqaaaaakiabgUcaRmaalaaabaGaeq4Wdm3aa0baaSqaaiaaigdaca aIZaaabaGaaGOmaaaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaaioda aeqaaaaaaOGaayjkaiaawMcaaaqaaiaadQfadaqhaaWcbaGaamizaa qaaiaacEcaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaa bmaabaWaaSaaaeaadaaadaqaaiabeo8aZnaaBaaaleaacaaIYaGaaG OmaaqabaaakiaawMYicaGLQmcadaqhaaWcbaGaey4kaScabaGaaGOm aaaaaOqaaiaadweadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaay zkaaaaaaa@5A00@

        ここで、 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaaWaaeaaai aawMYicaGLQmcadaWgaaWcbaGaey4kaScabeaaaaa@38D1@ はMacauleyの括弧で、これは σ 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaaaaa@395A@ の正の値のみを考慮します。ただし、以下に示す圧縮損傷が考慮される場合(シェルのみの場合)、これらの括弧は単純な括弧になります。

      • ソリッドの場合:
        Z d = 1 2 σ 12 2 G 12 + σ 23 2 G 23 + σ 13 2 G 13 Z d ' = 1 2 σ 22 + 2 E 2 + σ 33 + 2 E 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGAb WaaSbaaSqaaiaadsgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaadaqadaqaamaalaaabaGaeq4Wdm3aa0baaSqaaiaaigdaca aIYaaabaGaaGOmaaaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaaikda aeqaaaaakiabgUcaRmaalaaabaGaeq4Wdm3aa0baaSqaaiaaikdaca aIZaaabaGaaGOmaaaaaOqaaiaadEeadaWgaaWcbaGaaGOmaiaaioda aeqaaaaakiabgUcaRmaalaaabaGaeq4Wdm3aa0baaSqaaiaaigdaca aIZaaabaGaaGOmaaaaaOqaaiaadEeadaWgaaWcbaGaaGymaiaaioda aeqaaaaaaOGaayjkaiaawMcaaaqaaiaadQfadaqhaaWcbaGaamizaa qaaiaacEcaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaa bmaabaWaaSaaaeaadaaadaqaaiabeo8aZnaaBaaaleaacaaIYaGaaG OmaaqabaaakiaawMYicaGLQmcadaqhaaWcbaGaey4kaScabaGaaGOm aaaaaOqaaiaadweadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaS aaaeaadaaadaqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqabaaa kiaawMYicaGLQmcadaqhaaWcbaGaey4kaScabaGaaGOmaaaaaOqaai aadweadaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaaaaaa@6B63@

        これによって次の計算が導かれます。

        Y = S u p t τ Z d + b Z d ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaiabg2 da9iaadofacaWG1bGaamiCamaaBaaaleaacaWG0bGaeyizImQaeqiX dqhabeaakmaakaaabaGaamOwamaaBaaaleaacaWGKbaabeaakiabgU caRiaadkgacaWGAbWaa0baaSqaaiaadsgaaeaacaGGNaaaaaqabaaa aa@45BE@

        ここで、 b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@ は結合係数です。

      フラグISHの値に応じて、せん断マトリックス損傷は異なる形状で進展します。
      • ISH = 1: 線形形状(図 3
        d = 0 if Y ( t ) Y 0 Y ( t ) Y 0 Y C if d < d M A X , Y ( t ) < Y S , 1 ( 1 d M A X ) Y ( t Δ t ) Y ( t ) otherwise Y ( t ) < Y R MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9maaceaabaqbaeqabmWaaaqaaiaaicdaaeaacaqGPbGaaeOzaaqa aiaadMfacaGGOaGaamiDaiaacMcacqGHKjYOcaWGzbWaaSbaaSqaai aaicdaaeqaaaGcbaWaaSaaaeaacaWGzbGaaiikaiaadshacaGGPaGa eyOeI0IaamywamaaBaaaleaacaaIWaaabeaaaOqaaiaadMfadaWgaa WcbaGaam4qaaqabaaaaaGcbaGaaeyAaiaabAgaaeaacaWGKbGaeyip aWJaamizamaaBaaaleaacaWGnbGaamyqaiaadIfaaeqaaOGaaiilai aadMfacaGGOaGaamiDaiaacMcacqGH8aapcaWGzbWaaSbaaSqaaiaa dofaaeqaaOGaaiilaaqaaiaaigdacqGHsislcaGGOaGaaGymaiabgk HiTiaadsgadaWgaaWcbaGaamytaiaadgeacaWGybaabeaakiaacMca daWcaaqaaiaadMfacaGGOaGaamiDaiabgkHiTiabfs5aejaadshaca GGPaaabaGaamywaiaacIcacaWG0bGaaiykaaaaaeaacaqGVbGaaeiD aiaabIgacaqGLbGaaeOCaiaabEhacaqGPbGaae4Caiaabwgaaeaaaa aacaGL7baacaWGzbGaaiikaiaadshacaGGPaGaeyipaWJaamywamaa BaaaleaacaWGsbaabeaaaaa@7986@
        3. 線形形状でのせん断マトリックス損傷を示すせん断試験


      • ISH = 2: 指数関数的形状(図 4
        d = d s a t 1 1 exp Y 0 Y t Y C if Y t > Y 0 0 otherwise MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9maaceaabaqbaeqabiWaaaqaaiaadsgadaWgaaWcbaGaam4Caiaa dggacaWG0bGaaGymaaqabaGcdaqadaqaaiaaigdacqGHsislciGGLb GaaiiEaiaacchadaqadaqaamaalaaabaGaamywamaaBaaaleaacaaI WaaabeaakiabgkHiTiaadMfadaqadaqaaiaadshaaiaawIcacaGLPa aaaeaacaWGzbWaaSbaaSqaaiaadoeaaeqaaaaaaOGaayjkaiaawMca aaGaayjkaiaawMcaaaqaaiaabMgacaqGMbaabaGaamywamaabmaaba GaamiDaaGaayjkaiaawMcaaiabg6da+iaadMfadaWgaaWcbaGaaGim aaqabaaakeaacaaIWaaabaGaae4BaiaabshacaqGObGaaeyzaiaabk hacaqG3bGaaeyAaiaabohacaqGLbaabaaaaaGaay5Eaaaaaa@5E97@
        4. 指数関数的形状でのせん断マトリックス損傷を示すせん断試験


      • ISH = 3: 表形式形状(図 5

        d = f D 1 Y t Y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabg2 da9iaadAgadaWgaaWcbaGaamiraiaaigdaaeqaaOWaaeWaaeaadaWc aaqaaiaadMfadaqadaqaaiaadshaaiaawIcacaGLPaaaaeaacaWGzb WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaaaaa@414E@

        ここで、 f D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGebGaaGymaaqabaaaaa@388E@ は、IFUNCD1で識別される関数です。
        5. 表形式形状でのせん断マトリックス損傷を示すせん断試験


      このせん断マトリックス損傷は、次のように応力計算に影響します:
      • シェルの場合:
        σ x y d a m = 1 d σ x y σ y z d a m = min 1 d , 1 d ' σ y z σ z x d a m = min 1 d , 1 d ' σ z x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaqhaaWcbaGaamiEaiaadMhaaeaacaWGKbGaamyyaiaad2gaaaGc cqGH9aqpdaqadaqaaiaaigdacqGHsislcaWGKbaacaGLOaGaayzkaa Gaeq4Wdm3aaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabeo8aZnaa DaaaleaacaWG5bGaamOEaaqaaiaadsgacaWGHbGaamyBaaaakiabg2 da9iGac2gacaGGPbGaaiOBamaabmaabaGaaGymaiabgkHiTiaadsga caGGSaGaaGymaiabgkHiTiaadsgacaGGNaaacaGLOaGaayzkaaGaeq 4Wdm3aaSbaaSqaaiaadMhacaWG6baabeaaaOqaaiabeo8aZnaaDaaa leaacaWG6bGaamiEaaqaaiaadsgacaWGHbGaamyBaaaakiabg2da9i Gac2gacaGGPbGaaiOBamaabmaabaGaaGymaiabgkHiTiaadsgacaGG SaGaaGymaiabgkHiTiaadsgacaGGNaaacaGLOaGaayzkaaGaeq4Wdm 3aaSbaaSqaaiaadQhacaWG4baabeaaaaaa@72D1@
      • ソリッドの場合:
        σ x y d a m = 1 d σ x y σ y z d a m = 1 d σ y z σ z x d a m = 1 d σ z x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaqhaaWcbaGaamiEaiaadMhaaeaacaWGKbGaamyyaiaad2gaaaGc cqGH9aqpdaqadaqaaiaaigdacqGHsislcaWGKbaacaGLOaGaayzkaa Gaeq4Wdm3aaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiabeo8aZnaa DaaaleaacaWG5bGaamOEaaqaaiaadsgacaWGHbGaamyBaaaakiabg2 da9maabmaabaGaaGymaiabgkHiTiaadsgaaiaawIcacaGLPaaacqaH dpWCdaWgaaWcbaGaamyEaiaadQhaaeqaaaGcbaGaeq4Wdm3aa0baaS qaaiaadQhacaWG4baabaGaamizaiaadggacaWGTbaaaOGaeyypa0Za aeWaaeaacaaIXaGaeyOeI0IaamizaaGaayjkaiaawMcaaiabeo8aZn aaBaaaleaacaWG6bGaamiEaaqabaaaaaa@6555@
    • 横方向マトリックス損傷 d ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacE caaaa@3787@ では、マトリックスの微小亀裂を表すことができます。その進展は、異なる弾性エネルギー開放率が使用される点を除き、せん断マトリックス損傷と非常によく似ています。
      Y ' = S u p t τ Z d ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaCa aaleqabaGaai4jaaaakiabg2da9iaadofacaWG1bGaamiCamaaBaaa leaacaWG0bGaeyizImQaeqiXdqhabeaakmaakaaabaGaamOwamaaDa aaleaacaWGKbaabaGaai4jaaaaaeqaaaaa@42D9@
      せん断マトリックス損傷と同様、ITRフラグ値に応じて、3つの異なる進展形状が利用可能です。
      • ITR = 1: 線形形状(図 6
        d ' = 0 if Y ' ( t ) Y 0 ' Y ' ( t ) Y 0 ' Y C ' if d < d M A X , Y ' ( t ) < Y S , 1 ( 1 d M A X ) Y ' ( t Δ t ) Y ' ( t ) otherwise Y ' ( t ) < Y R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacE cacqGH9aqpdaGabaqaauaabeqadmaaaeaacaaIWaaabaGaaeyAaiaa bAgaaeaacaWGzbGaai4jaiaacIcacaWG0bGaaiykaiabgsMiJkaadM fadaWgaaWcbaGaaGimaaqabaGccaGGNaaabaWaaSaaaeaacaWGzbGa ai4jaiaacIcacaWG0bGaaiykaiabgkHiTiaadMfadaWgaaWcbaGaaG imaaqabaGccaGGNaaabaGaamywamaaBaaaleaacaWGdbaabeaakiaa cEcaaaaabaGaaeyAaiaabAgaaeaacaWGKbGaeyipaWJaamizamaaBa aaleaacaWGnbGaamyqaiaadIfaaeqaaOGaaiilaiaadMfacaGGNaGa aiikaiaadshacaGGPaGaeyipaWJaamywamaaBaaaleaacaWGtbaabe aakiaacYcaaeaacaaIXaGaeyOeI0IaaiikaiaaigdacqGHsislcaWG KbWaaSbaaSqaaiaad2eacaWGbbGaamiwaaqabaGccaGGPaWaaSaaae aacaWGzbGaai4jaiaacIcacaWG0bGaeyOeI0IaeuiLdqKaamiDaiaa cMcaaeaacaWGzbGaai4jaiaacIcacaWG0bGaaiykaaaaaeaacaqGVb GaaeiDaiaabIgacaqGLbGaaeOCaiaabEhacaqGPbGaae4Caiaabwga aeaaaaaacaGL7baacaWGzbGaai4jaiaacIcacaWG0bGaaiykaiabgY da8iaadMfadaWgaaWcbaGaamOuaaqabaaaaa@8033@
        6. 線形形状での横方向マトリックス損傷を示す、横方向の引張試験


      • ITR = 2: 指数関数的形状(図 7
        d ' = d s a t 2 1 exp Y 0 ' Y ' t Y C ' if Y ' t > Y 0 ' 0 otherwise MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacE cacqGH9aqpdaGabaqaauaabeqacmaaaeaacaWGKbWaaSbaaSqaaiaa dohacaWGHbGaamiDaiaaikdaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0 IaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiaadMfadaWgaaWc baGaaGimaaqabaGccaGGNaGaeyOeI0IaamywaiaacEcadaqadaqaai aadshaaiaawIcacaGLPaaaaeaacaWGzbWaaSbaaSqaaiaadoeaaeqa aOGaai4jaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaqGPb GaaeOzaaqaaiaadMfacaGGNaWaaeWaaeaacaWG0baacaGLOaGaayzk aaGaeyOpa4JaamywamaaBaaaleaacaaIWaaabeaakiaacEcaaeaaca aIWaaabaGaae4BaiaabshacaqGObGaaeyzaiaabkhacaqG3bGaaeyA aiaabohacaqGLbaabaaaaaGaay5Eaaaaaa@629A@
        7. 指数関数的形状での横方向マトリックス損傷を示す、横方向の引張試験


      • ITR = 3: 表形式形状(図 8

        d ' = f D 2 Y ' t Y 0 ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacE cacqGH9aqpcaWGMbWaaSbaaSqaaiaadseacaaIYaaabeaakmaabmaa baWaaSaaaeaacaWGzbGaai4jamaabmaabaGaamiDaaGaayjkaiaawM caaaqaaiaadMfadaWgaaWcbaGaaGimaaqabaGccaGGNaaaaaGaayjk aiaawMcaaaaa@4350@

        ここで、 f D 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGebGaaGOmaaqabaaaaa@388F@ は、IFUNCD2で識別される関数です。
        8. 表形式形状での横方向マトリックス損傷を示す、横方向の引張試験


        この損傷変数は、引張でのみ生じると想定されます。圧縮では、マトリックスの微小亀裂は近すぎて、最初の損傷のない剛性を回復できないと想定されます(図 9)。ただし、シェルのみの場合、圧縮での特定の横方向マトリックス損傷の進展は、パラメータ Y 0 C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaGaam4qaaqabaGccaGGNaaaaa@3934@ Y C C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbGaam4qaaqabaGccaGGNaaaaa@3942@ d s a t 2 C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGZbGaamyyaiaadshacaaIYaGaam4qaaqabaaaaa@3B63@ 、またはIFUNCD2Cを使用して同様に表すことができます。
        9. 横方向の引張 / 圧縮試験


        この最後の損傷変数は、次のように応力計算に影響します:

        σ y y d a m = 1 d ' σ y y if ε y y 0 σ y y if ε y y < 0 σ z z d a m = 1 d ' σ z z if ε z z 0 σ z z if ε z z < 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaqhaaWcbaGaamyEaiaadMhaaeaacaWGKbGaamyyaiaad2gaaaGc cqGH9aqpdaGabaqaauaabeqacmaaaeaadaqadaqaaiaaigdacqGHsi slcaWGKbGaai4jaaGaayjkaiaawMcaaiabeo8aZnaaBaaaleaacaWG 5bGaamyEaaqabaaakeaacaqGPbGaaeOzaaqaaiabew7aLnaaBaaale aacaWG5bGaamyEaaqabaGccqGHLjYScaaIWaaabaGaeq4Wdm3aaSba aSqaaiaadMhacaWG5baabeaaaOqaaiaabMgacaqGMbaabaGaeqyTdu 2aaSbaaSqaaiaadMhacaWG5baabeaakiabgYda8iaaicdaaaaacaGL 7baaaeaacqaHdpWCdaqhaaWcbaGaamOEaiaadQhaaeaacaWGKbGaam yyaiaad2gaaaGccqGH9aqpdaGabaqaauaabeqacmaaaeaadaqadaqa aiaaigdacqGHsislcaWGKbGaai4jaaGaayjkaiaawMcaaiabeo8aZn aaBaaaleaacaWG6bGaamOEaaqabaaakeaacaqGPbGaaeOzaaqaaiab ew7aLnaaBaaaleaacaWG6bGaamOEaaqabaGccqGHLjYScaaIWaaaba Gaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaaaOqaaiaabMgacaqG MbaabaGaeqyTdu2aaSbaaSqaaiaadQhacaWG6baabeaakiabgYda8i aaicdaaaaacaGL7baaaaaa@806A@

  5. 修正Ladevezeモデルで表される最後の現象はひずみ速度依存性です。ここでも、粘性効果は繊維とマトリックスで同じではないと見なされます。
    • 繊維方向において、粘性は、 F 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaGaaGymaaqabaaaaa@3860@ で表される速度係数の導入により、ヤング率に影響を与えます:
      E 1 v i s = E 1 1 + F 11 ε ˙ ε ˙ 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaDa aaleaacaaIXaaabaGaamODaiaadMgacaWGZbaaaOGaeyypa0Jaamyr amaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymaiabgUcaRiaadA eadaWgaaWcbaGaaGymaiaaigdaaeqaaOWaaeWaaeaadaWcaaqaaiqb ew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaaigdaae qaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@4993@

      ここで、 ε ˙ は相当ひずみ速度、 ε ˙ 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGymaiaaigdaaeqaaaaa@3945@ は方向1における参照ひずみ速度です。

      フラグLTYPE11の値に応じて、速度係数の式は異なる形状を取ります:
      • LTYPE11 = 1: べき乗則
        F 11 ε ˙ ε ˙ 11 = D 11 ε ˙ ε ˙ 11 n 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaGaaGymaaqabaGcdaqadaqaamaalaaabaGafqyTduMb aiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaGymaaqabaaaaa GccaGLOaGaayzkaaGaeyypa0JaamiramaaBaaaleaacaaIXaGaaGym aaqabaGcdaqadaqaamaalaaabaGafqyTduMbaiaaaeaacuaH1oqzga GaamaaBaaaleaacaaIXaGaaGymaaqabaaaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaWGUbWaaSbaaWqaaiaaigdacaaIXaaabeaaaaaaaa@4BF2@
      • LTYPE11 = 2: 線形則
        F 11 ε ˙ ε ˙ 11 = D 11 ε ˙ ε ˙ 11 + n 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaGaaGymaaqabaGcdaqadaqaamaalaaabaGafqyTduMb aiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaGymaaqabaaaaa GccaGLOaGaayzkaaGaeyypa0JaamiramaaBaaaleaacaaIXaGaaGym aaqabaGcdaqadaqaamaalaaabaGafqyTduMbaiaaaeaacuaH1oqzga GaamaaBaaaleaacaaIXaGaaGymaaqabaaaaaGccaGLOaGaayzkaaGa ey4kaSIaamOBamaaBaaaleaacaaIXaGaaGymaaqabaaaaa@4CA6@
      • LTYPE11 = 3: 対数則
        F 11 ε ˙ ε ˙ 11 = D 11 ln ε ˙ ε ˙ 11 + + log n 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaGaaGymaaqabaGcdaqadaqaamaalaaabaGafqyTduMb aiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaGymaaqabaaaaa GccaGLOaGaayzkaaGaeyypa0JaamiramaaBaaaleaacaaIXaGaaGym aaqabaGcdaaadaqaaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiqbew 7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaaigdaaeqa aaaaaOGaayjkaiaawMcaaaGaayzkJiaawQYiamaaBaaaleaacqGHRa WkaeqaaOGaey4kaSIaciiBaiaac+gacaGGNbGaamOBamaaBaaaleaa caaIXaGaaGymaaqabaaaaa@5442@
      • LTYPE11 = 4: 双曲線正接則
        F 11 ε ˙ ε ˙ 11 = D 11 tanh n 11 ε ˙ ε ˙ 11 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaGaaGymaaqabaGcdaqadaqaamaalaaabaGafqyTduMb aiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaGymaaqabaaaaa GccaGLOaGaayzkaaGaeyypa0JaamiramaaBaaaleaacaaIXaGaaGym aaqabaGcciGG0bGaaiyyaiaac6gacaGGObWaaeWaaeaacaWGUbWaaS baaSqaaiaaigdacaaIXaaabeaakmaaamaabaGafqyTduMbaiaacqGH sislcuaH1oqzgaGaamaaBaaaleaacaaIXaGaaGymaaqabaaakiaawM YicaGLQmcadaWgaaWcbaGaey4kaScabeaaaOGaayjkaiaawMcaaaaa @5350@

      繊維破壊も、係数 F 11 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaGaaGymaiaadkfaaeqaaaaa@3937@ の導入によりひずみ速度の影響を受け、この係数の進展もパラメータ D 11 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaGaaGymaiaadkfaaeqaaaaa@3935@ および n 11 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaGaaGymaiaadkfaaeqaaaaa@395F@ を使用することでフラグLTYPE11に依存します:

      ε f t i v i s = ε f t i 1 + F 11 R ε ˙ ε ˙ 11 ε f t u v i s = ε f t u 1 + F 11 R ε ˙ ε ˙ 11 ε f c i v i s = ε f c i 1 + F 11 R ε ˙ ε ˙ 11 ε f c u v i s = ε f c u 1 + F 11 R ε ˙ ε ˙ 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaH1o qzdaqhaaWcbaGaamOzaaqaaiaadshacaWGPbaaaOWaaWbaaSqabeaa caWG2bGaamyAaiaadohaaaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaam OzaaqaaiaadshacaWGPbaaaOWaaeWaaeaacaaIXaGaey4kaSIaamOr amaaBaaaleaacaaIXaGaaGymaiaadkfaaeqaaOWaaeWaaeaadaWcaa qaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaa igdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiabew 7aLnaaDaaaleaacaWGMbaabaGaamiDaiaadwhaaaGcdaahaaWcbeqa aiaadAhacaWGPbGaam4Caaaakiabg2da9iabew7aLnaaDaaaleaaca WGMbaabaGaamiDaiaadwhaaaGcdaqadaqaaiaaigdacqGHRaWkcaWG gbWaaSbaaSqaaiaaigdacaaIXaGaamOuaaqabaGcdaqadaqaamaala aabaGafqyTduMbaiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGa aGymaaqabaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaeq yTdu2aa0baaSqaaiaadAgaaeaacaWGJbGaamyAaaaakmaaCaaaleqa baGaamODaiaadMgacaWGZbaaaOGaeyypa0JaeqyTdu2aa0baaSqaai aadAgaaeaacaWGJbGaamyAaaaakmaabmaabaGaaGymaiabgUcaRiaa dAeadaWgaaWcbaGaaGymaiaaigdacaWGsbaabeaakmaabmaabaWaaS aaaeaacuaH1oqzgaGaaaqaaiqbew7aLzaacaWaaSbaaSqaaiaaigda caaIXaaabeaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacq aH1oqzdaqhaaWcbaGaamOzaaqaaiaadogacaWG1baaaOWaaWbaaSqa beaacaWG2bGaamyAaiaadohaaaGccqGH9aqpcqaH1oqzdaqhaaWcba GaamOzaaqaaiaadogacaWG1baaaOWaaeWaaeaacaaIXaGaey4kaSIa amOramaaBaaaleaacaaIXaGaaGymaiaadkfaaeqaaOWaaeWaaeaada Wcaaqaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGym aiaaigdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaaa@A044@

      予想される挙動を以下の図 10に詳細に示します。
      10. 繊維方向の挙動におけるひずみ速度効果


    • マトリックス方向において、せん断および横方向挙動もひずみ速度の影響を受けます。弾性は、係数 F 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaGaaGOmaaqabaaaaa@3862@ および F 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaGaaGOmaaqabaaaaa@3862@ を導入することにより、次のように変更されます:
      E 2 v i s = E 2 1 + F 22 ε ˙ ε ˙ 12 E 3 v i s = E 3 1 + F 22 ε ˙ ε ˙ 12 G 12 v i s = G 12 1 + F 12 ε ˙ ε ˙ 12 G 23 v i s = G 23 1 + F 12 ε ˙ ε ˙ 12 G 13 v i s = G 13 1 + F 12 ε ˙ ε ˙ 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb Waa0baaSqaaiaaikdaaeaacaWG2bGaamyAaiaadohaaaGccqGH9aqp caWGfbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaaIXaGaey4kaS IaamOramaaBaaaleaacaaIYaGaaGOmaaqabaGcdaqadaqaamaalaaa baGafqyTduMbaiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaG OmaaqabaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaamyr amaaDaaaleaacaaIZaaabaGaamODaiaadMgacaWGZbaaaOGaeyypa0 JaamyramaaBaaaleaacaaIZaaabeaakmaabmaabaGaaGymaiabgUca RiaadAeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOWaaeWaaeaadaWcaa qaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaa ikdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaadE eadaqhaaWcbaGaaGymaiaaikdaaeaacaWG2bGaamyAaiaadohaaaGc cqGH9aqpcaWGhbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaabmaaba GaaGymaiabgUcaRiaadAeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWa aeWaaeaadaWcaaqaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaa WcbaGaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaqaaiaadEeadaqhaaWcbaGaaGOmaiaaiodaaeaacaWG2bGaam yAaiaadohaaaGccqGH9aqpcaWGhbWaaSbaaSqaaiaaikdacaaIZaaa beaakmaabmaabaGaaGymaiabgUcaRiaadAeadaWgaaWcbaGaaGymai aaikdaaeqaaOWaaeWaaeaadaWcaaqaaiqbew7aLzaacaaabaGafqyT duMbaiaadaWgaaWcbaGaaGymaiaaikdaaeqaaaaaaOGaayjkaiaawM caaaGaayjkaiaawMcaaaqaaiaadEeadaqhaaWcbaGaaGymaiaaioda aeaacaWG2bGaamyAaiaadohaaaGccqGH9aqpcaWGhbWaaSbaaSqaai aaigdacaaIZaaabeaakmaabmaabaGaaGymaiabgUcaRiaadAeadaWg aaWcbaGaaGymaiaaikdaaeqaaOWaaeWaaeaadaWcaaqaaiqbew7aLz aacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaaikdaaeqaaaaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaaa@9CA9@

      2つの係数が同じひずみ速度参照値 ε ˙ 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@3946@ を使用していること、および E 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIZaaabeaaaaa@37A6@ G 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3864@ 、および G 13 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3864@ が変更されるのはソリッドのみであることがわかります。係数 F 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3864@ および F 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3864@ の形状は、フラグLTYPE12によって決定され、それぞれ D 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3864@ n 22 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaGaaGOmaaqabaaaaa@388A@ 、および D 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaaG4maaqabaaaaa@3864@ n 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaGaaGOmaaqabaaaaa@388A@ の値に依存します。

      破壊エネルギーも同じ係数を使用することで、ひずみ速度と共に増加します:
      Y 0 v i s = Y 0 1 + F 12 ε ˙ ε ˙ 12 Y C v i s = Y C 1 + F 12 ε ˙ ε ˙ 12 Y 0 ' v i s = Y 0 ' 1 + F 22 ε ˙ ε ˙ 12 Y C ' v i s = Y C ' 1 + F 22 ε ˙ ε ˙ 12 Y 0 C ' v i s = Y 0 C ' 1 + F 22 ε ˙ ε ˙ 12 Y C C ' v i s = Y C C ' 1 + F 22 ε ˙ ε ˙ 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGzb Waa0baaSqaaiaaicdaaeaacaWG2bGaamyAaiaadohaaaGccqGH9aqp caWGzbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXaGaey4kaS IaamOramaaBaaaleaacaaIXaGaaGOmaaqabaGcdaqadaqaamaalaaa baGafqyTduMbaiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaG OmaaqabaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaamyw amaaDaaaleaacaWGdbaabaGaamODaiaadMgacaWGZbaaaOGaeyypa0 JaamywamaaBaaaleaacaWGdbaabeaakmaabmaabaGaaGymaiabgUca RiaadAeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWaaeaadaWcaa qaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGymaiaa ikdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaadM fadaWgaaWcbaGaaGimaaqabaGccaGGNaWaaWbaaSqabeaacaWG2bGa amyAaiaadohaaaGccqGH9aqpcaWGzbWaaSbaaSqaaiaaicdaaeqaaO Gaai4jamaabmaabaGaaGymaiabgUcaRiaadAeadaWgaaWcbaGaaGOm aiaaikdaaeqaaOWaaeWaaeaadaWcaaqaaiqbew7aLzaacaaabaGafq yTduMbaiaadaWgaaWcbaGaaGymaiaaikdaaeqaaaaaaOGaayjkaiaa wMcaaaGaayjkaiaawMcaaaqaaiaadMfadaWgaaWcbaGaam4qaaqaba GccaGGNaWaaWbaaSqabeaacaWG2bGaamyAaiaadohaaaGccqGH9aqp caWGzbWaaSbaaSqaaiaadoeaaeqaaOGaai4jamaabmaabaGaaGymai abgUcaRiaadAeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOWaaeWaaeaa daWcaaqaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaG ymaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaqa aiaadMfadaWgaaWcbaGaaGimaiaadoeaaeqaaOGaai4jamaaCaaale qabaGaamODaiaadMgacaWGZbaaaOGaeyypa0JaamywamaaBaaaleaa caaIWaGaam4qaaqabaGccaGGNaWaaeWaaeaacaaIXaGaey4kaSIaam OramaaBaaaleaacaaIYaGaaGOmaaqabaGcdaqadaqaamaalaaabaGa fqyTduMbaiaaaeaacuaH1oqzgaGaamaaBaaaleaacaaIXaGaaGOmaa qabaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaamywamaa BaaaleaacaWGdbGaam4qaaqabaGccaGGNaWaaWbaaSqabeaacaWG2b GaamyAaiaadohaaaGccqGH9aqpcaWGzbWaaSbaaSqaaiaadoeacaWG dbaabeaakiaacEcadaqadaqaaiaaigdacqGHRaWkcaWGgbWaaSbaaS qaaiaaikdacaaIYaaabeaakmaabmaabaWaaSaaaeaacuaH1oqzgaGa aaqaaiqbew7aLzaacaWaaSbaaSqaaiaaigdacaaIYaaabeaaaaaaki aawIcacaGLPaaaaiaawIcacaGLPaaaaaaa@B656@
      注: 横方向の圧縮損傷パラメータ Y 0 C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIWaGaam4qaaqabaGccaGGNaaaaa@3934@ および Y C C ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGdbGaam4qaaqabaGccaGGNaaaaa@3942@ は、シェルの場合にのみ変更されます。
    • 粘性効果の影響を受ける最後のパラメータは、係数 F R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGsbGaaGimaaqabaaaaa@387B@ を使用した初期降伏応力です。
      σ Y 0 v i s = σ Y 0 1 + F R 0 ε ˙ ε ˙ R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadMfacaaIWaaabaGaamODaiaadMgacaWGZbaaaOGaeyyp a0Jaeq4Wdm3aaSbaaSqaaiaadMfacaaIWaaabeaakmaabmaabaGaaG ymaiabgUcaRiaadAeadaWgaaWcbaGaamOuaiaaicdaaeqaaOWaaeWa aeaadaWcaaqaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcba GaamOuaiaaicdaaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMca aaaa@4D75@

      同様に、係数 F R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGsbGaaGimaaqabaaaaa@387B@ の形状は、パラメータ D R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGsbGaaGimaaqabaaaaa@387B@ および n R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGsbGaaGimaaqabaaaaa@387B@ を使用して、フラグLTYPER0によって指定されます。

      予想されるマトリックスの横方向挙動(引張およびせん断と同様)を以下の図 11に詳細に示します。
      11. マトリックスの横方向(せん断)挙動におけるひずみ速度効果


1 P. Ladeveze, E. LeDantec, Damage modelling of the elementary ply for laminated composites, Composites Science and Technology, Volume 43, Issue 3, 1992, Pages 257-267, ISSN 0266-3538