RD-V: 0710 Fail BIQUAD

The subject of this analysis is to evaluate the /FAIL/BIQUAD failure criterion using material LAW36.

1. a) Shell element; b) Hexahedron element


The analysis is for 8 cases:
  • A square coupon modeled with Shell elements /SHELL with /PROP/SHELL property & QEPH formulation (Ishell=24)
  • A square coupon modeled with Shell elements /SHELL with /PROP/SHELL property & QBAT formulation (Ishell=12)
  • A square coupon modeled with SH3N elements /SH3N with /PROP/SHELL property & QEPH formulation (Ish3n=0)
  • A square coupon modeled with Hexahedron elements /BRICK with /PROP/SOLID property & HEPH formulation (Isolid =24)
  • A square coupon modeled with Hexahedron elements /BRICK with /PROP/SOLID property & HEPH formulation (Isolid =18)
  • A square coupon modeled with Hexahedron elements /BRICK with /PROP/TSHELL property & HSEPH formulation (Isolid =15)
  • A square coupon modeled with Hexahedron degenerated elements /BRICK with /PROP/SOLID property & HEPH formulation (Isolid =24)
  • A square coupon modeled with Tetrahedron elements /BRICK with /PROP/SOLID property & HEPH formulation (Itetra4 =3)

Options and Keywords

The following keywords are used in the models.

Model Files

Before you begin, copy the file(s) used in this problem to your working directory.

Model Descriptions

Units: Kg, mm, ms, GPa

The boundary conditions are represented.
2. All boundary conditions applied to the model


Material Law Characteristics

The material to be characterized is DP600 steel. The model is tested with different element formulations with a side length of 10x10 mm mentioned in the overview above.
Material Property
Values
Young's modulus
210 GPa
Poisson ratio
0.3
Density
7.8e-06 kg/mm3
  • LAW36
    The elasto-plastic behavior is defined using the tabulated material LAW36. The True Stress versus Plastic True Strain curve is used as an input of LAW36. For more information about the LAW36 material, refer to RD-V: 0240 Tabulated Material (LAW36) in Verification Problems.
    3. True stress versus True strain


  • /FAIL/BIQUAD
    This failure model uses a simplified nonlinear failure criterion based on plastic strain with linear damage accumulation. The failure strain is described by two parabolic functions, which are calculated by curve fitting from up to 5 failure strains entered by you represented below:
    c1
    Failure strain at uniaxial compression test
    where σ * = 1 / 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai Okaiabg2da9iabgkHiTiaaigdacaGGVaGaaG4maaaa@3C86@
    c2
    Failure strain at pure shear test
    where σ * = 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai Okaiabg2da9iabgkHiTiaaigdacaGGVaGaaG4maaaa@3C86@
    c3
    Failure strain at uniaxial tension test
    where σ * = 1 / 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai Okaiabg2da9iabgkHiTiaaigdacaGGVaGaaG4maaaa@3C86@
    c4
    Failure strain at plain strain tension test
    where σ∗=1/√3
    c5
    Failure strain at biaxial tension test
    where σ * = 2 / 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaai Okaiabg2da9iabgkHiTiaaigdacaGGVaGaaG4maaaa@3C86@
    The failure model used in this study is UHSS Steel, corresponding to Mflag=3.
    4. ε f σ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadAgaaeqaaOGaeyOeI0Iaeq4Wdm3aaWbaaSqabeaacaGG Qaaaaaaa@3C4A@ curve in /FAIL/BIQUAD


    By default, a failure criterion approach with stress computation is used for /FAIL/BIQUAD. This means that damage evolution has no effect on stress computation until the element deletion triggered by D = 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaaigdaaaa@3881@ . You may want to create a stress softening effect during damage evolution. To do so, the flag ICOUP must be a non-zero value to activate the stress/damage coupling. This introduces the following stress softening equation:

    σ = σ e f f 1 D D c r i t 1 D c r i t E X P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0Jaeq4Wdm3aaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaGcdaqa daqaaiaaigdacqGHsisldaqadaqaamaalaaabaGaamiraiabgkHiTi aadseadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiDaaqabaaakeaa caaIXaGaeyOeI0IaamiramaaBaaaleaacaWGJbGaamOCaiaadMgaca WG0baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadweacaWG ybGaamiuaaaaaOGaayjkaiaawMcaaaaa@51DE@

    Where,
    σ
    Damaged stress tensor
    σ e f f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGMbGaamOzaaqabaaaaa@3AA7@
    Undamaged effective stress tensor
    D c r i t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGJbGaamOCaiaadMgacaWG0baabeaaaaa@3AB2@
    Critical damage value that triggers stress softening
    E X P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaadI facaWGqbaaaa@3873@
    Exponent parameter
    Below are the /FAIL/BIQUAD parameters used for the different element’s formulation, except under “Effect of /FAIL/BIQUAD parameters on damage”:
    • M-Flag=3
    • S-Flag=3
    • Inst_start=0.05
    • DCRIT=0.5
    • EXP=2

Results