Iform = 4

Blockフォーマットキーワード この境界を使用すれば、多相材料ALE則(定式化: Iform = 0、1、10または11)の気体流入条件をシミュレートできます。

境界副材料状態は、ユーザーによって指定された停滞点での状態から計算されます。この機能の使用時は、速度が数値的なスキームによって計算される強制速度(/IMPVEL)を使用する必要はありません。

内容

ユーザーは、v=0の状態に相対する停滞点の状態 α s t a g n a t i o n = α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHXoqydaWgaaWcba GaaGimaaqabaaaaa@4632@ ρ s t a g n a t i o n = ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcba GaaGimaaqabaaaaa@4674@ および E s t a g n a t i o n = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0JaamyramaaBaaaleaaca aIWaaabeaaaaa@4488@ を提供する必要があります。理想気体EOSより:

P 0 = C 0 + ( 1 + μ ) ( γ 1 ) E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaaIWaaa beaakiabgUcaRiaacIcacaaIXaGaey4kaSIaeqiVd0Maaiykaiabgw SixlaacIcacqaHZoWzcqGHsislcaaIXaGaaiykaiabgwSixlaadwea daWgaaWcbaGaaGimaaqabaaaaa@4C65@

ここで、 C 4 = γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaisdaaeqaaOGaeyypa0Jaeq4SdCMaeyOeI0IaaGymaaaa @3D79@ 。ここから、 P s t a g n a t i o n = C 0 + C 4 E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0Jaam4qamaaBaaaleaaca aIWaaabeaakiabgUcaRiaadoeadaWgaaWcbaGaaGinaaqabaGccqGH flY1caWGfbWaaSbaaSqaaiaaicdaaeqaaaaa@4B33@ が導かれます。

各サイクルにおいて、Radiossは気体流入状態 ρ i n , E i n , P i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaamyAaiaad6gaaeqaaOGaaiilaiaadweadaWgaaWcbaGa amyAaiaad6gaaeqaaOGaaiilaiaadcfadaWgaaWcbaGaamyAaiaad6 gaaeqaaaaa@4262@ を、入力面における速度を用いてベルヌーイの定理が満足されるよう1計算します。
1.

law51_iform4

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW51/mat_ID/unit_ID
mat_title
空白のフォーマット
Iform
#グローバルパラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Scaletime PEXT
#材料1パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 1 ρ 0 mat _ 1 E 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 1 fct_ID ρ 1 fct_IDE1
C 1 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 4 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
C 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
#材料2パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 2 ρ 0 mat _ 2 E 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 2 fct_ID ρ 2 fct_IDE2
C 1 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 4 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
C 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
#材料3パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 3 ρ 0 mat _ 3 E 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 3 fct_ID ρ 3 fct_IDE3
C 1 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@ C 4 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@
C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

unit_ID Unit Identifier

(整数、最大10桁)

mat_title 材料のタイトル

(文字、最大100文字)

Iform 定式化フラグ
= 4
気体流入(停滞点でのデータから計算される)

(整数)

Scaletime 入力の関数の横軸のスケールファクタ 2

デフォルト = 1(実数)

PEXT 外部(周囲)圧力 3

(実数)

[ Pa ]
α 0 mat _ i 初期体積比率 4

(実数)

ρ 0 mat _ i 停滞点での初期密度 1

(実数)

[ kg m 3 ]
E 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 停滞点での初期エネルギー 5

(実数)

[ J m 3 ]
fct_ID α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ i (オプション)体積比率スケーリング関数 f α i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaaBa aaleaacqaHXoqydaWgaaadbaGaamyAaaqabaaaleqaaOWaaeWaaeaa caWG0baacaGLOaGaayzkaaaaaa@3C60@ 識別子 6
= 0
α m a t i ( t ) = α 0 m a t i
> 0
α m a t i ( t ) = α 0 m a t i f α i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaW baaSqabeaacaWGTbGaamyyaiaadshadaWgaaadbaGaamyAaaqabaaa aOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaeqySde2aa0 baaSqaaiaaicdaaeaacaWGTbGaamyyaiaadshadaWgaaadbaGaamyA aaqabaaaaOGaciOzamaaBaaaleaacqaHXoqydaWgaaadbaGaamyAaa qabaaaleqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@4C26@

(整数)

fct_ID ρ i (オプション)密度比率スケーリング関数 f ρ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacqaHbpGCpaWaaSbaaWqaa8qacaWG PbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaaaaa@3D82@ 識別子
= 0
ρ m a t i ( t ) = ρ 0 m a t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aY9aadaahaaWcbeqaa8qacaWGTbGaamyyaiaadshapaWa aSbaaWqaa8qacaWGPbaapaqabaaaaOWdbmaabmaapaqaa8qacaWG0b aacaGLOaGaayzkaaGaeyypa0JaeqyWdi3damaaDaaaleaapeGaaGim aaWdaeaapeGaamyBaiaadggacaWG0bWdamaaBaaameaapeGaamyAaa Wdaeqaaaaaaaa@4765@
> 0
ρ m a t i ( t ) = ρ 0 m a t i . f ρ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aY9aadaahaaWcbeqaa8qacaWGTbGaamyyaiaadshapaWa aSbaaWqaa8qacaWGPbaapaqabaaaaOWdbmaabmaapaqaa8qacaWG0b aacaGLOaGaayzkaaGaeyypa0JaeqyWdi3damaaDaaaleaapeGaaGim aaWdaeaapeGaamyBaiaadggacaWG0bWdamaaBaaameaapeGaamyAaa Wdaeqaaaaak8qacaGGUaGaaeOza8aadaWgaaWcbaWdbiabeg8aY9aa daWgaaadbaWdbiaadMgaa8aabeaaaSqabaGcpeWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaaaaa@4F34@

(整数)

fct_IDEi (オプション)エネルギー比率スケーリング関数 f E i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciOzamaaBa aaleaacaWGfbWaaSbaaWqaaiaadMgaaeqaaaWcbeaakmaabmaabaGa amiDaaGaayjkaiaawMcaaaaa@3B8B@ 識別子
= 0
E m a t i ( t ) = E 0 m a t i
> 0
E m a t i ( t ) = E 0 m a t i f E i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaiaadggacaWG0bWaaSbaaWqaaiaadMgaaeqaaaaa kmaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaadweadaqhaa WcbaGaaGimaaqaaiaad2gacaWGHbGaamiDamaaBaaameaacaWGPbaa beaaaaGcciGGMbWaaSbaaSqaaiaadweadaWgaaadbaGaamyAaaqaba aaleqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaaaaa@49A7@

(整数)

C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 理想気体EOSの係数 5

(実数)

[ Pa ]
C 4 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 理想気体( γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0IaaGymaaaa@3945@ )定数 5

(実数)

C 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 理想気体EOSの係数 5

(実数)

[ Pa ]

コメント

  1. 与えられた停滞点 ρ stagnation , P stagnation が、気体流入状態の計算に用いられます。ベルヌーイの定理が適用されます。

    P stagnation = P in + ρ in v in 2 2

    これが次の流入状態につながります。

    ρ in = ρ stagnation [ 1 γ 1 2 γ ρ stagnation P stagnation ( 1 + C d ) v in 2 ] 1 γ 1
    P i n = P s t a g n a t i o n ( ρ i n ρ s t a g n a t i o n ) γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGPbGaamOBaaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaa dohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWGPbGaam 4Baiaad6gaaeqaaOWaaeWaaeaadaWcaaqaaiabeg8aYnaaBaaaleaa caWGPbGaamOBaaqabaaakeaacqaHbpGCdaWgaaWcbaGaam4Caiaads hacaWGHbGaam4zaiaad6gacaWGHbGaamiDaiaadMgacaWGVbGaamOB aaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqaHZoWzaaaaaa@5702@
    ( ρ e ) i n = P a γ 1 ( ρ i n ρ stagnation ) γ 1

    その後で、平均値を計算することにより、グローバル材料状態が決定されます。
    圧力
    Δ P i n = i α m a t i ( t ) Δ P i n m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iuamaaBaaaleaacaWGPbGaamOBaaqabaGccqGH9aqpdaaeqaqaaiab eg7aHnaaCaaaleqabaGaamyBaiaadggacaWG0bWaaSbaaWqaaiaadM gaaeqaaaaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiabfs5aejaa dcfadaqhaaWcbaGaamyAaiaad6gaaeaacaWGTbGaamyyaiaadshaca GGFbGaamyAaaaaaeaacaWGPbaabeqdcqGHris5aaaa@4F44@
    密度
    ρ i n = i α m a t i ( t ) ρ i n m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMgacaWGUbaabeaakiabg2da9maaqababaGaeqySde2a aWbaaSqabeaacaWGTbGaamyyaiaadshadaWgaaadbaGaamyAaaqaba aaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeqyWdi3aa0baaSqa aiaadMgacaWGUbaabaGaamyBaiaadggacaWG0bGaai4xaiaadMgaaa aabaGaamyAaaqab0GaeyyeIuoaaaa@4E4E@
    エネルギー
    ( ρ e ) i n = i α m a t i ( t ) E i n m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCcaWGLbaacaGLOaGaayzkaaWaaSbaaSqaaiaadMgacaWGUbaa beaakiabg2da9maaqababaGaeqySde2aaWbaaSqabeaacaWGTbGaam yyaiaadshadaWgaaadbaGaamyAaaqabaaaaOWaaeWaaeaacaWG0baa caGLOaGaayzkaaGaamyramaaDaaaleaacaWGPbGaamOBaaqaaiaad2 gacaWGHbGaamiDaiaac+facaWGPbaaaaqaaiaadMgaaeqaniabggHi Ldaaaa@4FCB@
  2. オプションの比率関数は、体積、密度またはエネルギー比率をスケーリングするために使用できます。
  3. パラメータ P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadweacaWGybGaamivaaqabaaaaa@3AE9@ では、相対圧力 Δ P min m a t _ i を操作する場合に周囲圧力を考慮できます。このパラメータは、Radiossで各サイクルの正確なエネルギー統合に必要です。そうしないと、数値EOSの解が一般的に不正確になります。このパラメータは、全(物理)圧力を求めるためにEOS計算に含めなければならない圧力を表します。アニメーションファイル内の圧力コンターへの影響はありません。

    線形EOSを使用した例:

    全圧力: P = P amb + C 1 μ また、 P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@

    相対圧力: Δ P = C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc facqGH9aqpcaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaeqiVd0gaaa@3C5B@ 、また P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@

  4. 体積比率によって、要素体積を3つの異なる材料で分け合うことができます。

    材料毎に、 α 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaeqySde2aa0baaSqaaiaaicdaaeaacaWGTbGaamyyaiaadshacaaM i8Uaai4xaiaaxcW7caaMb8UaaGjcVlaadMgaaaaaaa@4702@ を0と1の間に定義する必要があります。

    初期体積比率の合計 i=1 3 α 0 mat_i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaabmaeaacqaHXoqydaqhaaWcbaGaaGimaaqaaiaad2gacaWGHbGa amiDaiaaxcW7caaMb8Uaai4xaiaaygW7caWGPbaaaaqaaiaadMgacq GH9aqpcaaIXaaabaGaaG4maaqdcqGHris5aaaa@4ACD@ は1に等しい必要があります。

    体積の自動初期比率については、/INIVOLをご参照ください。

  5. 理想気体EOSは P ( μ , E ) = ( γ 1 ) ( 1 + μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGaayjkaiaa wMcaaiabg2da9maabmaapaqaa8qacqaHZoWzcqGHsislcaaIXaaaca GLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH8oqBaiaa wIcacaGLPaaaaaa@46B1@ です。通常は、この一般形式 P = C 0 + C 1 μ + C 4 ( 1 + μ ) E を使用して記述できます。ここで、 C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ です。これは、圧力とエネルギーを合計にするか相対にするかにより、柔軟性が向上します:
    P ( μ , E ) = C 4 ( 1 + μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGaayjkaiaa wMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpe WaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH8oqBaiaawIcacaGLPaaa caWGfbaaaa@447E@

    ここで、 C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@

    これにより、 Δ P ( μ , E ) = C 0 + C 4 ( 1 + μ ) E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGa ayjkaiaawMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qacaaIWaaapa qabaGcpeGaey4kaSIaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaa k8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeY7aTbGaayjkaiaawM caaiaadweaaaa@48BC@ から一般形式が得られます。

    Δ P ( μ , E ) = C 0 + C 4 ( 1 + μ ) E

    ここで、 C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@   C 0 = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadoeapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyp a0JaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3D02@ および P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadweacaWGybGaamivaaWdaeqaaOWd biabg2da9iaadcfapaWaaSbaaSqaa8qacaWGHbGaamyBaiaadkgaa8 aabeaaaaa@3EC9@

    Δ P ( μ , Δ E ) = C 0 + C 1 μ + C 4 ( 1 + μ ) Δ E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaeuiLdqKa amyraaGaayjkaiaawMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaey4kaSIaam4qa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqaH8oqBcqGHRaWkcaWGdbWdamaaBaaaleaapeGaaG inaaWdaeqaaOWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeqiVd0ga caGLOaGaayzkaaGaeuiLdqKaamyraaaa@5017@

    ここで、 C 4 = ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaqa daWdaeaapeGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@3E03@ C 1 = E 0 ( γ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG fbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacq aHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaaaaa@3FF8@ および P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@

  6. Δ P min m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaeiLdiaadcfadaqhaaWcbaGaciyBaiaacMgacaGGUbaabaGaamyB aiaadggacaWG0bGaaGjcVlaac+facaWLa8UaaGzaVlaayIW7caWGPb aaaaaa@496A@ フラグは、計算される圧力の最小値です。

    P = Δ P + P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaqGuoGaamiuaiabgUcaRiaadcfapaWaaSba aSqaa8qacaWGfbGaamiwaiaadsfaa8aabeaaaaa@3EDA@ のため、 P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ の定義は Δ P P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiaadcfacqGHHjIUcaWGqbaaaa@3A99@ および Δ P m i n P m i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiaadcfapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aa beaak8qacqGHHjIUcaWGqbWdamaaBaaaleaapeGaamyBaiaadMgaca WGUbaapaqabaaaaa@410D@ を意味します。

    液体材料圧力を正のままにして、引張り強度を避ける必要があります。これにより、 P m i n = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabeaa k8qacqGH9aqpcaaIWaaaaa@3C5B@ から Δ P m i n = P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabs5acaWGqbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaa paqabaGcpeGaeyypa0JaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaadw eacaWGybGaamivaaWdaeqaaaaa@4157@ が得られます。

    ソリッド材料については、 Δ P min m a t _ i = 10 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaeuiLdqKaamiuamaaDaaaleaaciGGTbGaaiyAaiaac6gaaeaacaWG TbGaamyyaiaadshacaaMi8Uaai4xaiaaxcW7caaMb8UaaGjcVlaadM gaaaGccqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaaG4maiaaicda aaaaaa@4DDF@ のデフォルト値が適切です

  7. EOSパラメータは、隣接するMM-ALE領域からの気体EOSと一致する必要があります。