MATVP

バルクデータエントリ 非線形クリープ材料の材料特性を定義します。

フォーマットA: べき乗法則に基づいた定義の場合(CTYPE=TIMECTIMETHYPERB

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATVP MID CTYPE A n m B R dH  
  thetaZ                

フォーマットB: 試験データからの材料パラメータキャリブレーションの場合(CTYPE=TEST

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATVP MID TEST TID SIG ALB AUB nLB nUB  
  mLB mUB              

フォーマットC:Anand材料モデルの場合(CTYPE=ANAND

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATVP MID ANAND A n m ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B6@ R dH  
  thetaZ a s ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaja aaaa@36FB@ A0 A1 A2 A3 A4  
  S1 S2 S3            

フォーマットD:Darveaux材料モデルの場合(CTYPE=DARVEAU

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATVP MID DARVEAU C s s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGZbGaam4Caaqabaaaaa@38D7@ n   α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ R dH  
  thetaZ ε T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadsfaaeqaaaaa@389F@ B            

例 A

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATVP 101 STRAIN 3.28e-11 3.15 -0.2        

例 B

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATVP 102 TEST 1001 39.3          

定義

フィールド 内容 SI単位の例
MID 固有の材料識別番号。

デフォルトなし(整数 > 0)

 
CTYPE クリープ材料のモデルタイプを指定します。
STRAIN(デフォルト)
ひずみ硬化フォームに基づきます。
TIMEC
クリープ時間を使用した時間硬化フォームに基づきます。
TIMET
合計時間を使用した時間硬化フォームに基づきます。
HYPERB
双曲線正弦硬化フォームに基づきます。
ANAND
Anand材料モデルに基づきます。
DARVEAU
Darveaux材料モデルに基づきます。
TEST
実験的試験データに基づきます9
 
A 材料パラメータ。

デフォルトなし(実数 > 0.0)

 
C s s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGZbGaam4Caaqabaaaaa@38D7@ 材料パラメータ。

デフォルトなし(実数 > 0.0)

 
n 材料パラメータ。

デフォルトなし(実数 > 0.0)

 
m 材料パラメータ。

CTYPE = STRAINTIMECTIMETの場合、デフォルトなし(-1.0 ≤ 実数 ≤ 0.0)

CTYPE=ANANDの場合、デフォルトなし(実数)

 
B 材料パラメータ。 8

デフォルトなし(実数 > 0.0)

 
α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@ 材料パラメータ。

デフォルトなし(実数 > 0.0)

 
ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B6@ 材料パラメータ。

デフォルトなし(実数 > 0.0)

 
R 一般気体定数。 8

デフォルトなし(実数 > 0.0)

 
dH 活性化エネルギー。 8

デフォルトなし(実数 > 0.0)

 
thetaZ 絶対零度。

デフォルト = 0.0(実数)

 
ε T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadsfaaeqaaaaa@389F@ 材料パラメータ。

デフォルトなし(実数)

 
a 材料パラメータ。

デフォルトなし(実数)

 
s ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaja aaaa@36FB@ 材料パラメータ。

デフォルトなし(実数 > 0.0)

 
A0 材料パラメータ。

デフォルトなし(実数)

 
A1 材料パラメータ。

デフォルト = 0.0(実数)

 
A2 材料パラメータ。

デフォルト = 0.0(実数)

 
A3 材料パラメータ。

デフォルト = 0.0(実数)

 
A4 材料パラメータ。

デフォルト = 0.0(実数)

 
S1 材料パラメータ。

デフォルトなし(実数)

 
S2 材料パラメータ。

デフォルト = 0.0(実数)

 
S3 材料パラメータ。

デフォルト = 0.0(実数)

 
TID 実験的試験データを含むTABLES1エントリの表識別番号。 9
TABLES1定義では、
  • y値はクリープひずみにする必要があります。
  • x値は時点にする必要があります。

(整数 > 0)

 
SIG 実験的試験データのフォンミーゼス応力。

デフォルトなし(実数 ≥ 0.0)

 
ALB 材料パラメータAの下限。 10

デフォルトなし (実数 > 0.0)

 
AUB 材料パラメータAの上限。 10

デフォルトなし (実数 > 0.0)

 
nLB 材料パラメータnの下限。

デフォルト = 0.0 (実数 ≧ 0.0)

 
nUB 材料パラメータnの上限。

デフォルト = 6.0 (実数 > 0.0)

 
mLB 材料パラメータmの下限。

デフォルト = -1.0 (-1 ≦ 実数 < 0.0)

 
mUB 材料パラメータmの上限。

デフォルト = 0.0 (-1 < 実数 ≦ 0.0)

 

コメント

  1. MATVPに関するサポート情報は次のとおりです:
    • 解析タイプ:微小変位タイプと大変位タイプの両方の非線形静 / 過渡解析。
    • 要素:CHEXACTETRACPENTACPYRA
  2. 同じMIDMAT1MATVPバルクデータエントリを指定することで、クリープ材料をモデル化できます。同じMIDMAT1MATS1、およびMATVPバルクデータエントリを指定することで、塑性を伴うクリープ材料をモデル化できます。
  3. VISCOカードのTINTフィールドを使用することにより、クリープ材料に対して陽的時間積分または陰的時間積分を選択できます。
  4. 各種材料モデルの定式化は次のとおりです:
    STRAIN硬化の定式化:(1)
    ε ¯ ˙ c = A 1 m + 1 σ ¯ n m + 1 ( ( m + 1 ) ε ¯ c ) m m + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaahaaWcbeqaaiaadogaaaGccqGH9aqpcaWGbbWaaWbaaSqa beaadaWcaaqaaiaaigdaaeaacaWGTbGaey4kaSIaaGymaaaaaaGccu aHdpWCgaqeamaaCaaaleqabaWaaSaaaeaacaWGUbaabaGaamyBaiab gUcaRiaaigdaaaaaaOWaaeWaaeaadaqadaqaaiaad2gacqGHRaWkca aIXaaacaGLOaGaayzkaaGafqyTduMbaebadaahaaWcbeqaaiaadoga aaaakiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaamyBaaqaai aad2gacqGHRaWkcaaIXaaaaaaaaaa@501B@
    TIME硬化の定式化:(2)
    ε ¯ ˙ c = A σ ¯ n t m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaahaaWcbeqaaiaadogaaaGccqGH9aqpcaWGbbGafq4WdmNb aebadaahaaWcbeqaaiaad6gaaaGccaWG0bWaaWbaaSqabeaacaWGTb aaaaaa@3FC6@
    ここで、
    ε ¯ ˙ c = 2 3 ε ˙ c : ε ˙ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaahaaWcbeqaaiaadogaaaGccqGH9aqpdaGcaaqaamaalaaa baGaaGOmaaqaaiaaiodaaaGafqyTduMbaiaadaahaaWcbeqaaiaado gaaaGccaGG6aGafqyTduMbaiaadaahaaWcbeqaaiaadogaaaaabeaa aaa@41CE@
    等価クリープひずみ速度
    σ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae baaaa@37D2@
    等価偏差応力
    t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36F0@
    総時間
    HYPERB 材料モデルの定式化:(3)
    ε ¯ ˙ c = Asinh n ( B σ ¯ ) exp ( d H R ( θ θ z ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae HbaiaadaahaaWcbeqaaiaadogaaaGcqaaaaaaaaaWdbiabg2da9iaa bgeacaqGZbGaaeyAaiaab6gacaqGObWdamaaCaaaleqabaWdbiaad6 gaaaGccaGGOaGaamOqaiqbeo8aZzaaraGaaiykaiaabwgacaqG4bGa aeiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGKbGaamisaaqaaiaadk fadaqadaqaaiabeI7aXjabgkHiTiabeI7aXnaaCaaaleqabaGaamOE aaaaaOGaayjkaiaawMcaaaaaaiaawIcacaGLPaaaaaa@52C9@
    ここで、
    θ および θ z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe aacqaH4oqCdaahaaWcbeqaaiaadQhaaaaaaa@38F8@
    それぞれ現在温度と絶対零度。
    d H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqaaaaaaaaaWdbe aacaWGKbGaamisaaaa@37CC@ がゼロに設定されている場合、温度依存性はありません。
    Anand材料モデルの定式化:(4)
    ˙ ¯ c = A sinh 1 m ξ σ ¯ s exp d H R θ θ Z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacu GHiiIZgaGaaaaadaahaaWcbeqaaiaadogaaaGccqGH9aqpcaWGbbGa ci4CaiaacMgacaGGUbGaaiiAamaaCaaaleqabaWaaSaaaeaacaaIXa aabaGaamyBaaaaaaGcdaqadaqaaiabe67a4naalaaabaWaa0aaaeaa cqaHdpWCaaaabaGaam4CaaaaaiaawIcacaGLPaaaciGGLbGaaiiEai aacchadaqadaqaaiabgkHiTmaalaaabaGaamizaiaadIeaaeaacaWG sbWaaeWaaeaacqaH4oqCcqGHsislcqaH4oqCdaahaaWcbeqaaiaadQ faaaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@5542@
    (5)
    s ˙ = h o 1 s s * a s i g n 1 s s * ˙ ¯ c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaca Gaeyypa0JaamiAamaaBaaaleaacaWGVbaabeaakmaaemaabaGaaGym aiabgkHiTmaalaaabaGaam4CaaqaaiaadohadaahaaWcbeqaaiaacQ caaaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaWGHbaaaOGaam4C aiaadMgacaWGNbGaamOBamaabmaabaGaaGymaiabgkHiTmaalaaaba Gaam4CaaqaaiaadohadaahaaWcbeqaaiaacQcaaaaaaaGccaGLOaGa ayzkaaWaa0aaaeaacuGHiiIZgaGaaaaadaahaaWcbeqaaiaadogaaa aaaa@4F6B@
    (6)
    s * = s ^ 1 A ˙ ¯ c exp d H R θ θ Z n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaacQ cacqGH9aqpceWGZbGbaKaadaWadaqaamaalaaabaGaaGymaaqaaiaa dgeaaaWaa0aaaeaacuGHiiIZgaGaaaaadaahaaWcbeqaaiaadogaaa GcciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaamizaiaadIea aeaacaWGsbWaaeWaaeaacqaH4oqCcqGHsislcqaH4oqCdaahaaWcbe qaaiaadQfaaaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaacaGL BbGaayzxaaWaaWbaaSqabeaacaWGUbaaaaaa@4F00@
    (7)
    h 0 = A 0 + A 1 θ θ Z + A 2 θ θ Z 2 + A 3 ˙ ¯ c + A 4 ˙ ¯ c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIWaaabeaakiabg2da9iaadgeadaWgaaWcbaGaaGimaaqa baGccqGHRaWkcaWGbbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacq aH4oqCcqGHsislcqaH4oqCdaahaaWcbeqaaiaadQfaaaaakiaawIca caGLPaaacqGHRaWkcaWGbbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaae aacqaH4oqCcqGHsislcqaH4oqCdaahaaWcbeqaaiaadQfaaaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGbbWaaS baaSqaaiaaiodaaeqaaOWaa0aaaeaacuGHiiIZgaGaaaaadaahaaWc beqaaiaadogaaaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaisdaaeqaaO WaaeWaaeaadaqdaaqaaiqbgIGioBaacaaaamaaCaaaleqabaGaam4y aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@5BC5@
    (8)
    s 0 = S 1 + S 2 θ θ Z + A 3 θ θ Z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaakiabg2da9iaadofadaWgaaWcbaGaaGymaaqa baGccqGHRaWkcaWGtbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacq aH4oqCcqGHsislcqaH4oqCdaahaaWcbeqaaiaadQfaaaaakiaawIca caGLPaaacqGHRaWkcaWGbbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaae aacqaH4oqCcqGHsislcqaH4oqCdaahaaWcbeqaaiaadQfaaaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@4ECA@
    ここで、
    s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EB@
    変形抵抗
    s 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaaaaa@37D1@
    初期変形抵抗
    Darveaux材料モデルの定式化:(9)
    ˙ ¯ s c = C ss sinh n α σ ¯ exp dH R θ θ Z ˙ ¯ c = ˙ ¯ s c 1+ T Bexp B ˙ ¯ s c t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqdaa qaaiqbgIGioBaacaaaamaaDaaaleaacaWGZbaabaGaam4yaaaakiab g2da9iaadoeadaWgaaWcbaGaam4CaiaadohaaeqaaOGaci4CaiaacM gacaGGUbGaaiiAamaaCaaaleqabaGaamOBaaaakmaabmaabaGaeqyS de2aa0aaaeaacqaHdpWCaaaacaGLOaGaayzkaaGaciyzaiaacIhaca GGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadsgacaWGibaabaGaamOu amaabmaabaGaeqiUdeNaeyOeI0IaeqiUde3aaWbaaSqabeaacaWGAb aaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaqaamaanaaabaGa fyicI4SbaiaaaaWaaWbaaSqabeaacaWGJbaaaOGaeyypa0Zaa0aaae aacuGHiiIZgaGaaaaadaqhaaWcbaGaam4CaaqaaiaadogaaaGcdaqa daqaaiaaigdacqGHRaWkcqGHiiIZdaWgaaWcbaGaamivaaqabaGcca WGcbGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcaWGcbWaa0aa aeaacuGHiiIZgaGaaaaadaqhaaWcbaGaam4CaaqaaiaadogaaaGcca WG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaaa@6F31@
  5. さまざまなCTYPE材料パラメータの単位:
    • STRAIN, TIMEC, TIMET
      材料パラメータ
      単位系
      A
      F n L 2 n T ( m + 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaCa aaleqabaGaeyOeI0IaamOBaaaakiaadYeadaahaaWcbeqaaiaaikda caWGUbaaaOGaamivamaaCaaaleqabaGaeyOeI0Iaaiikaiaad2gacq GHRaWkcaaIXaGaaiykaaaaaaa@4168@
    • HYPERB
      材料パラメータ
      単位系
      A
      T 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@38A2@
      B
      F 1 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaCa aaleqabaGaeyOeI0IaaGymaaaakiaadYeadaahaaWcbeqaaiaaikda aaaaaa@3A58@
      dH
      J M 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaad2 eadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@396A@
      R
      J M 1 θ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaad2 eadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaigdaaaaaaa@3CFF@
      thetaZ
      θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AA@
    • ANAND
      材料パラメータ
      単位系
      A
      T 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@38A2@
      B
      F 1 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaCa aaleqabaGaeyOeI0IaaGymaaaakiaadYeadaahaaWcbeqaaiaaikda aaaaaa@3A58@
      dH
      J M 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaad2 eadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@396A@
      R
      J M 1 θ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaad2 eadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaigdaaaaaaa@3CFF@
      thetaZ
      θ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AA@
      A0
      F L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaaaaa@3966@
      s ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4Cayaaja aaaa@36FB@
      F L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaaaaa@3966@
      S1
      F L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaaaaa@3966@
      S2
      F L 2 θ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaigdaaaaaaa@3CFB@
      S3
      F L 2 θ 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaikdaaaaaaa@3CFC@
      A1
      F L 2 θ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaigdaaaaaaa@3CFB@
      A2
      F L 2 θ 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaikdaaaaaaa@3CFC@
      A3
      F L 2 T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaWGubaaaa@3A49@
      A4
      F L 2 T 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaadY eadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaWGubWaaWbaaSqabeaa caaIYaaaaaaa@3B32@
    • DARVEAU
      材料パラメータ
      単位系
      C s s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGZbGaam4Caaqabaaaaa@38D7@
      T 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@38A2@
      dH
      J M 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaad2 eadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@396A@
      R
      J M 1 θ 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaad2 eadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqaH4oqCdaahaaWcbeqa aiabgkHiTiaaigdaaaaaaa@3CFF@
      α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3792@
      F 1 L 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaCa aaleqabaGaeyOeI0IaaGymaaaakiaadYeadaahaaWcbeqaaiaaikda aaaaaa@3A58@
    ここで、
    F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C2@
    L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C2@
    長さ
    T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C2@
    時間

    値が小さすぎる場合は、別の単位セットに切り替えることを検討してください。上記以外の材料パラメータはすべて無次元です。

  6. 特定のサブケースでクリープ材料解析を行うには、VISCOサブケースエントリが必須です。
  7. CNTNLSUBが時間硬化フォームと共に使用されている場合:
    • TIMECは、VISCOエントリがあるサブケースのみからの累積時間を示します。
    • TIMETは、結合されているすべてのサブケースからの累積時間を示します。

    例えば、4つのサブケース(1、2、3、および5)がある場合、サブケース1、3、および5のみがCNTNLSUBによって結合されているとします。

    サブケース1と5にはVISCOエントリがあるが、サブケース3にはVISCOエントリがない場合、次のようになります:
    • TIMECは、サブケース1と5のみからの累積時間を示します。
    • TIMETは、サブケース1、3、5からの累積時間を示します。

    CNTNLSUBが使用されていない場合、TIMECTIMETの両方には、特定のサブケース(VISCOエントリがあるサブケースのみ)の時間を示すという同じ効果があります。

  8. 材料パラメータは、選択したクリープ則に従って指定する必要があります。例えば、パラメータBは双曲線正弦モデルとDarveauxモデルの両方で使用されますが、これらの意味は異なります。

    Anandモデルで、比率dH/Rが唯一の使用可能な単位である場合は、Rを1.0に設定して、dH/RdHの値として使用します。 s 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaaaaa@37D1@ h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIWaaabeaaaaa@37C6@ が既知の場合は、これらを s 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@37D2@ A 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIWaaabeaaaaa@379F@ の値として設定し、他のすべての s i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaWGPbaabeaaaaa@3805@ A i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@37D3@ をゼロに設定します。

  9. フォーマットBは、実験的クリープ試験データに基づく基本材料パラメータのキャリブレーション機能に使用できます。キャリブレーションは、時間硬化定式化に基づきます。上限と下限は、キャリブレーションプロセス中の適切なパラメータ値の検索に使用できます。
  10. ALBAUBのデフォルト値はありません。以下は値の例です:
    • ALB=1.0e-25、AUB=1.0e-20
    • ALB=1.0e-20、AUB=1.0e-15
    • ALB=1.0e-15、AUB=1.0e-10
    • ALB=1.0e-10、AUB=1.0e-5
    • ALB=1.0e-5、AUB=1.0