MATHC

バルクデータエントリ この材料データは、陽解法解析におけるハニカム材料の挙動を定義します。

この材料は、異方性挙動を持つハニカムや発泡材を表現するために使用されます。非線形弾塑性材料は、非圧縮の場合、法線方向とせん断方向の挙動を別々に定義することができ、完全な圧縮モデルでは等方性材料モデルを考慮します。この材料はソリッド要素に利用できます。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHC MID E NU RHO SIGY VF
LCA LCB LCC LCAB LCBC LCCA
EAAU EBBU ECCU GABU GBCU GCAU

定義

フィールド 内容 SI単位の例
MID 材料識別番号。

デフォルト無し(整数 > 0)

E 圧縮ハニカム材のヤング率

デフォルトなし(実数 > 0)

Nu 圧縮ハニカム材のポアソン比。

デフォルトなし(実数 > 0)

RHO 質量密度。

デフォルトなし(実数 > 0)

SIGY 完全圧縮ハニカム材の降伏応力。

デフォルトなし(実数 > 0)

VF ハニカム材が完全に圧縮される相対体積。

デフォルト無し (0 < 実数 < 1実数)

LCA 体積ひずみに対するsigaa関数の識別番号。

デフォルト無し(整数 > 0)

LCB 体積ひずみに対するsigbb関数の識別番号。

デフォルト無し(整数 > 0)

LCC 体積ひずみに対するsigcc関数の識別番号。

デフォルト無し(整数 > 0)

LCAB 体積ひずみに対するsigab関数の識別番号。

デフォルト無し(整数 > 0)

LCBC 体積ひずみに対するsigbc関数の識別番号。

デフォルト無し(整数 > 0)

LCCA 体積ひずみに対するsigca関数の識別番号。

デフォルト無し(整数 > 0)

EAAU 非圧縮状態での初期ヤング率Eaa。

デフォルトなし(実数 > 0)

EBBU 非圧縮状態での初期ヤング率Ebb。

デフォルトなし(実数 > 0)

ECCU 非圧縮状態での初期ヤング率Ecc。

デフォルトなし(実数 > 0)

GABU 非圧縮状態でのせん断係数Gab。

デフォルトなし(実数 > 0)

GBCU 非圧縮状態でのせん断係数Gbc。

デフォルトなし(実数 > 0)

GCAU 非圧縮状態でのせん断係数Gca。

デフォルトなし(実数 > 0)

コメント

一般的な非線形弾塑性挙動
  1. 非圧縮ハニカム材 V > VF

    圧縮前の挙動は直交性で、応力は連成されません。方向別の弾性率は、初期値からVfにおける等方性を持つ完全圧縮値Eまで、次のように変化します:

    E a a = E a a u + β E E a a u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadggacaWGHbaapaqabaGcpeGaeyyp a0Jaamyra8aadaWgaaWcbaWdbiaadggacaWGHbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGfbGaeyOeI0Iaamyr a8aadaWgaaWcbaWdbiaadggacaWGHbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4807@
    E b b = E b b u + β E E b b u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadkgacaWGIbaapaqabaGcpeGaeyyp a0Jaamyra8aadaWgaaWcbaWdbiaadkgacaWGIbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGfbGaeyOeI0Iaamyr a8aadaWgaaWcbaWdbiaadkgacaWGIbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@480D@
    E c c = E c c u + β E E c c u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadogacaWGJbaapaqabaGcpeGaeyyp a0Jaamyra8aadaWgaaWcbaWdbiaadogacaWGJbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGfbGaeyOeI0Iaamyr a8aadaWgaaWcbaWdbiaadogacaWGJbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4813@
    G a b = G a b u + β G G a b u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeyyp a0Jaam4ra8aadaWgaaWcbaWdbiaadggacaWGIbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGhbGaeyOeI0Iaam4r a8aadaWgaaWcbaWdbiaadggacaWGIbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4812@
    G b c = G b c u + β G G b c u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadkgacaWGJbaapaqabaGcpeGaeyyp a0Jaam4ra8aadaWgaaWcbaWdbiaadkgacaWGJbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGhbGaeyOeI0Iaam4r a8aadaWgaaWcbaWdbiaadkgacaWGJbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4818@
    G c a = G c a u + β G G c a u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadogacaWGHbaapaqabaGcpeGaeyyp a0Jaam4ra8aadaWgaaWcbaWdbiaadogacaWGHbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGhbGaeyOeI0Iaam4r a8aadaWgaaWcbaWdbiaadogacaWGHbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4815@
    β = max Min 1 V 1 V F , 0 , 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaciyBaiaacggacaGG4bWaamWaa8aabaWdbiaa b2eacaqGPbGaaeOBamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymai abgkHiTiaadAfaa8aabaWdbiaaigdacqGHsislcaWGwbWdamaaBaaa leaapeGaamOraaWdaeqaaaaak8qacaGGSaGaaGimaaGaayjkaiaawM caaiaacYcacaaIXaaacaGLBbGaayzxaaaaaa@4B56@ G = E 2 1 + ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabg2da9maalaaapaqaa8qacaWGfbaapaqaa8qacaaIYaWa aeWaa8aabaWdbiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaa aaaa@3EB0@

    Vは相対体積、VFはハニカムが圧縮される相対体積。非圧縮構成では、試行応力成分は次のように更新されます:

    σ a a t r i a l t n + 1 = σ a a t r i a l t n + E a a Δ ϵ a a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamyyaiaadggaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadggacaWGHb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadweapaWaaSbaaSqaa8qacaWGHbGaamyy aaWdaeqaaOWdbiaabs5atuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaadggacaWGHbaapaqa baaaaa@6559@
    σ b b t r i a l t n + 1 = σ b b t r i a l t n + E b b Δ ϵ b b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamOyaiaadkgaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadkgacaWGIb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadweapaWaaSbaaSqaa8qacaWGIbGaamOy aaWdaeqaaOWdbiaabs5atuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaadkgacaWGIbaapaqa baaaaa@6561@
    σ c c t r i a l t n + 1 = σ c c t r i a l t n + E c c Δ ϵ c c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaam4yaiaadogaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadogacaWGJb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadweapaWaaSbaaSqaa8qacaWGJbGaam4y aaWdaeqaaOWdbiaabs5atuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaadogacaWGJbaapaqa baaaaa@6569@
    σ a b t r i a l t n + 1 = σ a b t r i a l t n + 2 G a b Δ ϵ a b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamyyaiaadkgaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadggacaWGIb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaaikdacaWGhbWdamaaBaaaleaapeGaamyy aiaadkgaa8aabeaak8qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuGacqWF1pG8paWaaSbaaSqaa8qacaWGHbGaamOy aaWdaeqaaaaa@661B@
    σ b c t r i a l t n + 1 = σ b c t r i a l t n + 2 G b c Δ ϵ b c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamOyaiaadogaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadkgacaWGJb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaaikdacaWGhbWdamaaBaaaleaapeGaamOy aiaadogaa8aabeaak8qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuGacqWF1pG8paWaaSbaaSqaa8qacaWGIbGaam4y aaWdaeqaaaaa@6623@
    σ c a t r i a l t n + 1 = σ c a t r i a l t n + 2 G c a Δ ϵ b c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaam4yaiaadggaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadogacaWGHb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaaikdacaWGhbWdamaaBaaaleaapeGaam4y aiaadggaa8aabeaak8qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuGacqWF1pG8paWaaSbaaSqaa8qacaWGIbGaam4y aaWdaeqaaaaa@6620@

    各応力成分は、各成分の応力対体積ひずみ曲線(LCAA、LCBB、...など)で定義される許容値を超えてはなりません。

    σ i j t r i a l t n + 1 < σ i j V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiabeo8aZ9aadaqhaaWcbaWdbiaadMgacaWGQbaa paqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaapa qaa8qacaWG0bWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aa beaaaOWdbiaawIcacaGLPaaaaiaawEa7caGLiWoacqGH8aapcqaHdp WCpaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbmaabmaapaqa a8qacaWGwbaacaGLOaGaayzkaaaaaa@4F58@
    したがって、
    σ i j t n + 1 = σ i j V σ i j t r i a l t n + 1 σ i j t r i a l t n + 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXa aapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaeq4Wdm3damaaBaaa leaapeGaamyAaiaadQgaa8aabeaak8qadaqadaWdaeaapeGaamOvaa GaayjkaiaawMcaamaalaaapaqaa8qacqaHdpWCpaWaa0baaSqaa8qa caWGPbGaamOAaaWdaeaapeGaamiDaiaadkhacaWGPbGaamyyaiaadY gaaaGcdaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6gacqGH RaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qadaabda WdaeaapeGaeq4Wdm3damaaDaaaleaapeGaamyAaiaadQgaa8aabaWd biaadshacaWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbi aadshapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGc peGaayjkaiaawMcaaaGaay5bSlaawIa7aaaaaaa@67D0@
    σ i j V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaapeGaamOvaaGaayjkaiaawMcaaaaa@3CA4@ は、LCAA、LCBB、LCCC ... を使用して各成分に対して定義されます(図 1参照)。

  2. 圧縮ハニカム材 V < VF

    完全に圧縮されたハニカム材の場合、挙動は等方的で弾性的な完全塑性であると仮定します。したがって、応力はフックの材料法則を用いて更新されます。偏差応力は次式で与えられます:

    S i j t r i a l t n + 1 = S i j t n + 1 + 2 G Δ ε i j d e v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMgacaWGQbaapaqaa8qacaWG0bGa amOCaiaadMgacaWGHbGaamiBaaaakmaabmaapaqaa8qacaWG0bWdam aaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOWdbiaawIca caGLPaaacqGH9aqpcaWGtbWdamaaBaaaleaapeGaamyAaiaadQgaa8 aabeaak8qadaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6ga cqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaaG OmaiaadEeacaqGuoGaeqyTdu2damaaDaaaleaapeGaamyAaiaadQga a8aabaWdbiaadsgacaWGLbGaamODaaaaaaa@57A6@
    ここで、偏差ひずみの増分は次式で定義されます:
    Δ ε i j d e v = ε i j 1 3 Δ ε k k δ i j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiabew7aL9aadaqhaaWcbaWdbiaadMgacaWGQbaapaqaa8qa caWGKbGaamyzaiaadAhaaaGccqGH9aqpcqaH1oqzpaWaaSbaaSqaa8 qacaWGPbGaamOAaaWdaeqaaOWdbiabgkHiTmaalaaapaqaa8qacaaI Xaaapaqaa8qacaaIZaaaaiaabs5acqaH1oqzpaWaaSbaaSqaa8qaca WGRbGaam4AaaWdaeqaaOWdbiabes7aK9aadaWgaaWcbaWdbiaadMga caWGQbaapaqabaaaaa@4E90@

    完全に圧縮されたハニカム材料のフォンミーゼス相当応力は、SIGYと比較されます。有効応力が降伏応力を超える場合、テンソル応力は降伏面まで単純にスケールバックされます:

    S i j t n + 1 = σ y S e q t r i a l   S i j t r i a t n + 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeWaaeWa a8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaa WdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacqaH dpWCpaWaaSbaaSqaa8qacaWG5baapaqabaaakeaapeGaam4ua8aada qhaaWcbaWdbiaadwgacaWGXbaapaqaa8qacaWG0bGaamOCaiaadMga caWGHbGaamiBaaaaaaGccaGGGcGaam4ua8aadaqhaaWcbaWdbiaadM gacaWGQbaapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbaaaOWaaeWa a8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaa WdaeqaaaGcpeGaayjkaiaawMcaaaaa@58DE@
    ここで、 S e q t r i a l = 3 2   S i j t r i a   S i j t r i a 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadwgacaWGXbaapaqaa8qacaWG0bGa amOCaiaadMgacaWGHbGaamiBaaaakiabg2da9maabmaapaqaa8qada WcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaacaGGGcGaam4ua8aa daqhaaWcbaWdbiaadMgacaWGQbaapaqaa8qacaWG0bGaamOCaiaadM gacaWGHbaaaOGaaiiOaiaadofapaWaa0baaSqaa8qacaWGPbGaamOA aaWdaeaapeGaamiDaiaadkhacaWGPbGaamyyaaaaaOGaayjkaiaawM caa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGOmaaaaaaaaaa@5499@

    圧力は、体積弾性率を用いて次のように更新されます:

    P t n + 1 = P t n K Δ ε k k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaiab gUcaRiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaWGqb WaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbaapaqabaaa k8qacaGLOaGaayzkaaGaeyOeI0Iaam4saiaabs5acqaH1oqzpaWaaS baaSqaa8qacaWGRbGaam4AaaWdaeqaaaaa@4922@
    ここで、 K = E 3 1 2 ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9maalaaapaqaa8qacaWGfbaapaqaa8qacaaIZaWa aeWaa8aabaWdbiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaay zkaaaaaaaa@3F7C@

    したがって、FinalCauchy応力は次のように計算されます。

    σ i j t n + 1 = S i j t n + 1 P t n + 1 δ i j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXa aapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaam4ua8aadaWgaaWc baWdbiaadMgacaWGQbaapaqabaGcpeWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabgkHiTiaadcfadaqadaWdaeaapeGaamiDa8aadaWgaa WcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzk aaGaeqiTdq2damaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaaa@54DD@

    1. 応力と体積ひずみ