OS-V: 0710 Curved Cantilever Beam

MacNeal-Harder Test This is a curved cantilever beam solved with solid and shell elements. A model is made with each element's type to investigate the effect of distorted elements with a high aspect ratio.

1. FE Model of the Beam with Boundary Conditions and Loadcases

veri_curve

Model Files

開始前に、この問題で使用するファイルを作業ディレクトリにコピーしてください。

Benchmark Model

Six types of elements are used for this problem. They are tria-shell, quad-shell, and hexa-solid elements, each with 1st and 2nd order. Two loading cases, in-plane bending and transverse bending, are used for each model. For both load cases, unit loads are applied in a consistent fashion over all of the nodes at the tip of the beam.

Theoretical solutions for the deflections at the tip, computed by beam theory, are:
Load Type Component Value
In-plane bending UY 0.08734
Transverse bending UZ 0.5022

Linear Static Analysis Results

All results are normalized with the target value.
In-plane Bending Transverse Bending
QUAD4 0.952 0.955
QUAD8 1.015 0.984
TRI3 0.025 0.950
TRI6 1.005 0.961
HEX8 0.880 0.820
HEX20 1.009 0.946

Reference

MacNeal, R.H., and Harder, R.L., A Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Elements in Analysis and Design, 1 (1985) 3-20.