OS-V: 0080 Buckling of Shells and Composites with Offset

A test of influence of offset on buckling solution for shells, including composite with offset Z0 and element offset ZOFFS.



図 1. FE Model of the Beam with Boundary Conditions and Loadcases

Model Files

開始前に、この問題で使用するファイルを作業ディレクトリにコピーしてください。

Benchmark Model

Here, you solve several problems to calculate the critical load on different conditions. The model is a simply supported beam of height 1 mm, breadth 2 mm and length 100 mm with one end constrained in all DOFs and an axial load applied on the other end.

The material properties for the beam are:
MAT1
Young's Modulus
1 x 106 N/mm2
Poisson's Ratio
0.0
Density
2 kg/mm3
Thermal Expansion Coefficient
1 x 10-4 ºC-1
Reference Temperature for Thermal Loading
300ºC
The different case description of the problem are:
  1. Buckling without offset.
  2. Buckling with moment equivalent to offset.
  3. Buckling with offset created by a frame.
  4. Buckling with offset applied through ZOFFS.
  5. Buckling of composite with non-symmetrical layup.
  6. Buckling of composite with offset.
The theoretical critical buckling load is calculated using the Euler Buckling equation:(1)
f crit =π EI ( KL ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGJbGaamOCaiaadMgacaWG0baabeaakiabg2da9iabec8a WnaalaaabaGaamyraiaadMeaaeaadaqadaqaaiaadUeacaWGmbaaca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@435B@
Where,
f crit MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGJbGaamOCaiaadMgacaWG0baabeaaaaa@3AD3@
Maximum or critical force
E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@36C0@
Modulus of elasticity
I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C4@
Area moment of inertia (second moment of area)
L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C7@
Unsupported length of the beam
K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C6@
Column effective length factor (for one end fixed and the other end free, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C6@ =2)

Results



図 2. First Four Buckling Eigenvalues for Non-offset (z0 = -0.5)
Quantity Theoretical No-offset Normalized
λ cr(1) 4.1123 4.1208 0.997937
λ cr(2) 16.449 16.513 0.996124
λ cr(3) 37.011 37.701 0.981698
λ cr(4) 102.81 108.19 0.950273


図 3. First Four Buckling Eigenvalues for Non-offset + Moment . (the effect of offset is simulated by adding a moment at the end of the beam)
Quantity Theoretical No-offset + Moment Normalized
λ cr(1) 4.1123 4.1208 0.997937
λ cr(2) 16.449 16.513 0.996124
λ cr(3) 37.011 37.701 0.981698
λ cr(4) 102.81 108.19 0.950273


図 4. First Four Buckling Eigenvalues for C-Frame. (the effect of offset is simulated by creating a C-shaped frame)
Quantity Theoretical C-Frame Normalized
λ cr(1) 4.1123 4.1208 0.997937
λ cr(2) 16.449 16.513 0.996124
λ cr (3) 37.011 37.700 0.981724
λ cr(4) 102.81 108.19 0.950273


図 5. First Four Buckling Eigenvalues for z-offset (Zoffs = -0.5)
Quantity Theoretical ZOFFS Normalized
λ cr(1) 4.1123 4.1208 0.997937
λ cr(2) 16.449 16.513 0.996124
λ cr(3) 37.011 37.700 0.981724
λ cr(4) 102.81 108.19 0.950273


図 6. First Four Buckling Eigenvalues for Non-symmetric Layup . (since the top layer is very weak, the load is applied to the “strong” layer with an offset of 0.5)
Quantity Theoretical Non-symmetric Layup Normalized
λ cr(1) 4.1123 4.1203 0.998058
λ cr(2) 16.449 16.510 0.996305
λ cr(3) 37.011 37.663 0.982689
λ cr(4) 102.81 107.89 0.952915


図 7. First Four Buckling Eigenvalues for Composites with Offset (z0 = -1)
Quantity Theoretical Offset Composite Normalized
λ cr(1) 4.1123 4.1203 0.998058
λ cr(2) 16.449 16.510 0.996305
λ cr(3) 37.011 37.663 0.982689
λ cr(4) 102.81 107.89 0.952915