MATVP
Bulk Data Entry Defines material properties for nonlinear creep materials.
Format A: For Power law-based definition (CTYPE=TIMEC, TIMET, HYPERB, NORTON, DORN)
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| MATVP | MID | CTYPE | A | n | m | B | R | dH | |
| thetaZ | 
Format B: For material parameter calibration from test data (CTYPE=TEST)
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| MATVP | MID | TEST | TID | SIG | ALB | AUB | nLB | nUB | |
| mLB | mUB | 
Format C: For Anand material model (CTYPE=ANAND)
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| MATVP | MID | ANAND | A | n | m | R | dH | ||
| thetaZ | a | A0 | A1 | A2 | A3 | A4 | |||
| S1 | S2 | S3 | 
Format D: For Darveaux material model (CTYPE=DARVEAU)
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| MATVP | MID | DARVEAU | n | R | dH | ||||
| thetaZ | B | 
Example A
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| MATVP | 101 | STRAIN | 3.28e-11 | 3.15 | -0.2 | 
Example B
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| MATVP | 102 | TEST | 1001 | 39.3 | 
Definitions
| Field | Contents | SI Unit Example | 
|---|---|---|
| MID | Unique material identification number.
                   No default (Integer > 0)  | 
              |
| CTYPE | Specifies the creep material model
                  type.
  | 
              |
| A | Material parameter. No default (Real > 0.0)  | 
              |
| Material parameter. No default (Real > 0.0)  | 
              ||
| n | Material parameter. No default (Real > 0.0)  | 
              |
| m | Material parameter. No default (-1.0 ≤ Real ≤ 0.0) for CTYPE = STRAIN, TIMEC, TIMET No default (Real) for CTYPE=ANAND  | 
              |
| B | Material parameter. 8 No default (Real > 0.0)  | 
              |
| Material parameter. No default (Real > 0.0)  | 
              ||
| Material parameter. No default (Real > 0.0)  | 
              ||
| R | Universal gas constant. 8 No default (Real > 0.0)  | 
              |
| dH | Activation energy. 8 No default (Real > 0.0)  | 
              |
| thetaZ | Absolute zero temperature. Default = 0.0 (Real)  | 
              |
| Material parameter. No default (Real)  | 
              ||
| a | Material parameter. No default (Real)  | 
              |
| Material parameter. No default (Real > 0.0)  | 
              ||
| A0 | Material parameter. No default (Real)  | 
              |
| A1 | Material parameter. Default = 0.0 (Real)  | 
              |
| A2 | Material parameter. Default = 0.0 (Real)  | 
              |
| A3 | Material parameter. Default = 0.0 (Real)  | 
              |
| A4 | Material parameter. Default = 0.0 (Real)  | 
              |
| S1 | Material parameter. No default (Real)  | 
              |
| S2 | Material parameter. Default = 0.0 (Real)  | 
              |
| S3 | Material parameter. Default = 0.0 (Real)  | 
              |
| TID | Table identification number of a
                  TABLES1 entry containing experimental test data. 9 In the TABLES1 definition, 
 (Integer > 0)  | 
              |
| SIG | von Mises stress of the experimental
                test data. No default (Real ≥ 0.0)  | 
              |
| ALB | Lower bound for the material parameter
                A. 10 No default (Real > 0.0)  | 
              |
| AUB | Upper bound for the material parameter
                A. 10 No default (Real > 0.0)  | 
              |
| nLB | Lower bound for the material parameter
                  n. Default = 0.0 (Real ≧ 0.0)  | 
              |
| nUB | Upper bound for the material parameter
                  n. Default = 6.0 (Real > 0.0)  | 
              |
| mLB | Lower bound for the material parameter
                  m. Default = -1.0 (-1 ≦ Real < 0.0)  | 
              |
| mUB | Upper bound for the material parameter
                  m. Default = 0.0 (-1 < Real ≦ 0.0)  | 
              
Comments
- Support information for MATVP is:
- Analysis types: Nonlinear static/transient for both small/large displacement types.
 - Elements: CHEXA, CTETRA, CPENTA, CPYRA, CGASK.
 
 - Specifying a MAT1 and a MATVP Bulk Data Entry with the same MID allows modeling creep material for solid elements. Specifying a MAT1, a MATS1 and a MATVP Bulk Data Entry with the same MID can model a creep material with plasticity for solid elements. Specifying an MGASK Bulk Data Entry with the same MID can model the creep behavior for GASKET elements,
 - You can choose explicit or implicit time integration for creep materials by using the TINT field of the VISCO card.
 - The formulation for different material models
          are as follows:
STRAIN hardening formulation:
TIME hardening formulation:Where,- Equivalent creep strain rate
 - Equivalent deviatoric stress
 - Total time
 
HYPERB material model formulation:Where,- and
 - The current and absolute zero temperatures, respectively.
 
Anand material model formulation:Where,- Deformation resistance
 - Initial deformation resistance
 
Darveaux material model formulation:
Norton material model formulation:Where,- Current temperature
 - Absolute zero temperature
 
Dorn material model formulation:Where,- and
 - Current temperature
 - Absolute zero temperature
 
 - The units of various CTYPE
          material parameters:
- STRAIN, TIMEC, TIMET
- Material Parameter
 - Units
 - A
 
 - HYPERB
- Material Parameter
 - Units
 - A
 - B
 - dH
 - R
 - thetaZ
 
 - ANAND
- Material Parameter
 - Units
 - A
 - B
 - dH
 - R
 - thetaZ
 - A0
 - S1
 - S2
 - S3
 - A1
 - A2
 - A3
 - A4
 
 - DARVEAU
- Material Parameter
 - Units
 - dH
 - R
 
 
Where,- Force
 - Length
 - Time
 
Consider switching to another set of units if the values are too small. All other material parameters not mentioned above are dimensionless.
 - STRAIN, TIMEC, TIMET
 - A VISCO Subcase Entry is mandatory to conduct creep material analysis in a particular subcase.
 - If CNTNLSUB is used with the
          time hardening form:
- TIMEC indicates the accumulative time, only from the subcases with the VISCO entry.
 - TIMET indicates the accumulative time from all the connected subcases.
 
For example, if there are 4 subcases – 1, 2, 3 and 5, where only Subcases 1, 3, and 5 are connected by CNTNLSUB.
If subcases 1 and 5 have VISCO entry while Subcase 3 does not have the VISCO entry, then:- TIMEC will indicate the accumulative time from Subcases 1 and 5 only.
 - TIMET will indicate the accumulative time from Subcases 1, 3 and 5.
 
If CNTNLSUB is not used, then both TIMEC and TIMET have the same effect of denoting the time for a specific subcase (only for subcases with the VISCO entry).
 - The material parameters must be specified
          according to the chosen creep law. For example, the parameter B is used in both Hyperbolic
          Sine and the Darveaux models, but their meanings are different. 
For the Anand model, if the ratio dH/R is the only available unit, set R as 1.0 and use dH/R as the value of dH. If and are known, set them as the values of and and set all other and as zeroes.
 - Format B can be used for a basic material parameter calibration functionality based on experimental creep test data. The calibration is based on a time hardening formulation. The upper and lower bounds can be used for searching the suitable parameter values during the calibration process.
 - There are no default values for
            ALB and AUB. The following are example values:
- ALB=1.0e-25, AUB=1.0e-20
 - ALB=1.0e-20, AUB=1.0e-15
 - ALB=1.0e-15, AUB=1.0e-10
 - ALB=1.0e-10, AUB=1.0e-5
 - ALB=1.0e-5, AUB=1.0