alt.hst.api.dataset Module#
- enum ConstraintCondition(value)#
Bases:
EnumFEASIBLEThe results are within the relaxed constraint bounds.ACCEPTABLEThe results are within constraint bounds.VIOLATEDThe results are outside the strict constraint bounds.UNKNOWNThere is no known constraint condition.
Valid values are as follows:
- UNKNOWN = <ConstraintCondition.UNKNOWN: 'Unknown'>#
- FEASIBLE = <ConstraintCondition.FEASIBLE: 'Feasible'>#
- ACCEPTABLE = <ConstraintCondition.ACCEPTABLE: 'Acceptable'>#
- VIOLATED = <ConstraintCondition.VIOLATED: 'Violated'>#
The
Enumand its members also have the following methods:- classmethod fromString(value: str) ConstraintCondition#
- enum DataFrameID(value)#
Bases:
EnumValid values are as follows:
- PRIMARY = <DataFrameID.PRIMARY: '$primary'>#
- START_POINT = <DataFrameID.START_POINT: '$start_point'>#
- VERIFICATION = <DataFrameID.VERIFICATION: '$verification'>#
- CROSS_VALIDATION = <DataFrameID.CROSS_VALIDATION: '$cross_validation'>#
- VALIDATION = <DataFrameID.VALIDATION: '$validation'>#
- INITIALIZATION = <DataFrameID.INITIALIZATION: '$initialization'>#
- RECONCILE_FIT = <DataFrameID.RECONCILE_FIT: '$reconcile_fit'>#
- ITERATIVE_USER_REQUESTS = <DataFrameID.ITERATIVE_USER_REQUESTS: '$iterative_user_requests'>#
- EDIT_TEMPORARY = <DataFrameID.EDIT_TEMPORARY: '$edit_temp'>#
- class DataSet(approach: Approach)#
Bases:
object- getCategory(varname: str) VariableCategory#
Get the category for the item in the dataset with the corresponding varname.
- Parameters:
varname (str) – The varname of the item in the dataset.
- Returns:
The category of the item.
- Return type:
- Raises:
RuntimeError – If the variable does not exist in the dataset.
- getCategoryDescription(varname: str) str#
Get the description of the category for the given varname.
- Parameters:
varname (str) – The varname of the item in the dataset.
- Returns:
The description of the category of the item.
- Return type:
str
- Raises:
RuntimeError – If the variable does not exist in the dataset.
- getCategoryInternal(varname: str) int#
Get the internal category for the item in the dataset with the corresponding varname.
- Parameters:
varname (str) – The varname of the item in the dataset.
- Returns:
The internal category of the item.
- Return type:
int
- Raises:
RuntimeError – If the variable does not exist in the dataset.
- getCellMetadata(evaluationIndex: int, key: MetadataKey, varname: str) int#
Get cell metadata specified by the key and variable name for the evaluation at the given index.
Note
The metadata for
MetadataKey.OPT_CONSTRAINT_VIOLATION_VALUEis returned as an integer that needs to be bitwise cast to a float.- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
key (MetadataKey) – The key for the desired metadata.
varname (str) – The varname for the column to get metadata for.
- Returns:
The integer values for the cell metadata.
- Return type:
int
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
ValueError – If the variable does not exist in the dataset.
See also
- getConversionStrings() List[str]#
Get the list of strings that map to the the equivalent index given in stored data.
- Returns:
The list of string values that can be mapped to evaluation values for string data types.
- Return type:
List[str]
- getDataSourceData(evaluationIndex: int, varname: str, frameIdentifier: DataFrameID = DataFrameID.PRIMARY) Union[npt.NDArray[np.str_], npt.NDArray[np.float64]]#
Get data source data for the given varname and evaluation index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the data source in the dataset.
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
The data source data as a NumPy array.
- Return type:
typing.Union[npt.NDArray[np.str_], npt.NDArray[np.float64]]
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
RuntimeError – If the variable is not an array variable.
- getDescription(varname: str) str#
Get the description for the item in the dataset with the corresponding varname.
- Parameters:
varname (str) – The varname of the item in the dataset.
- Returns:
The description of the item.
- Return type:
str
- Raises:
RuntimeError – If the variable does not exist in the dataset.
- static getDisplayIndexFromEvaluationIndex(index: int) int#
Convert an internal evaluation or iteration index to an index that is suitable for display.
- Parameters:
index (int) – The original evaluation index (0-based).
- Returns:
The display index (1-based).
- Return type:
int
- Raises:
ValueError – If the index is less than 0.
- getEvaluationComment(evaluationIndex: int) str#
Get the comment for the evaluation at the given index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
- Returns:
The comment for the evaluation.
- Return type:
str
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getEvaluationCondition(evaluationIndex: int) ConstraintCondition#
Get the constraint condition for the evaluation at the given index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
- Returns:
The constraint condition for the evaluation.
- Return type:
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getEvaluationCount() int#
Get the number of evaluations in the dataset.
- Returns:
The number of evaluations.
- Return type:
int
- getEvaluationData(frameIdentifier: DataFrameID = DataFrameID.PRIMARY) Dict[str, List[float] | List[str]]#
Get the evaluation values for scalar variables in the dataset.
- Parameters:
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
The evaluation data with its string data converted to its string representation.
- Return type:
Dict[str, List[float, int, str]]
- static getEvaluationIndexFromDisplayIndex(index: int) int#
Convert an index that has been adjusted for display purposes back into the original index used for evaluation or iteration.
- Parameters:
index (int) – The display index (1-based).
- Returns:
The original evaluation index (0-based).
- Return type:
int
- Raises:
ValueError – If the index is less than 1.
- getEvaluationIndexes() List[int]#
Get the list of indexes for all evaluations in the dataset.
- Returns:
A list of evaluation indexes (0-based).
- getEvaluationMetadata(evaluationIndex: int, key: MetadataKey) int#
Get the metadata for the evaluation at the given index.
Note
The metadata for
MetadataKey.OPT_CONSTRAINT_VIOLATION_VALUEis returned as an integer that needs to be bitwise cast to a float.- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
key (MetadataKey) – The key for the desired metadata.
- Returns:
The integer values for the metadata.
- Return type:
int
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getEvaluationMetadataString(evaluationIndex: int, key: MetadataKey) str#
Get the metadata for the evaluation at the given index as a string
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
key (MetadataKey) – The key for the desired metadata.
- Returns:
The string values for the metadata.
- Return type:
str
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getEvaluationOrigin(evaluationIndex: int) EvaluationOriginInfo#
Get the origin information for the evaluation at the given index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
- Returns:
The origin information for the evaluation.
- Return type:
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getEvaluationPostProcessState(evaluationIndex: int) bool#
Check if a given evaluation is included in post-processing.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
- Returns:
True if the evaluation is included in post-processing, False otherwise.
- Return type:
bool
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getEvaluationValues(varname: str, frameIdentifier: DataFrameID = DataFrameID.PRIMARY) List[float] | List[str]#
Get the values for all evaluations for the scalar variable with the given varname.
- Parameters:
varname (str) – The varname of the scalar variable in the dataset.
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
The evaluations values, converting string data to its string representation.
- Return type:
Union[List[float], List[str]]
- Raises:
ValueError – If the variable does not exist in the dataset.
- getEvaluationsForIteration(iterationIndex: int) List[int]#
Get the evaluations that were run during the given iteration.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
- Returns:
A list of evaluation indexes run during the given iteration.
- Return type:
List[int]
- Raises:
IndexError – If the index is out of bounds for the number of iteration in the dataset.
- getExtendedCellMetadata(evaluationIndex: int, group: ExtendedMetadataGroup, field: ExtendedMetadataField, index: int, varname: str) int#
Get extended cell metadata specified by the group, field, and index for the evaluation at the given index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
group (ExtendedMetadataGroup) – The group of the extended metadata.
field (ExtendedMetadataField) – The field of the extended metadata.
index (int) – The index of the extended metadata within the group and field.
varname (str) – The varname for the column to get metadata for.
- Returns:
The integer values for the extended cell metadata.
- Return type:
int
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
ValueError – If the variable does not exist in the dataset.
- getExtendedEvaluationMetadata(evaluationIndex: int, group: ExtendedMetadataGroup, field: ExtendedMetadataField, index: int) int#
Get extended metadata specified by the group, field, and index for the evaluation at the given index.
Example - Get the execution time for the first evaluation of the first model#executionTime = ds.getExtendedEvaluationMetadata( 0, dataset.ExtendedMetadataGroup.MODEL, dataset.ExtendedMetadataField.TIME_EXECUTE, 0)
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
group (ExtendedMetadataGroup) – The group of the extended metadata.
field (ExtendedMetadataField) – The field of the extended metadata.
index (int) – The index of the extended metadata within the group and field.
- Returns:
The integer values for the extended metadata.
- Return type:
int
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getExtendedEvaluationMetadataString(evaluationIndex: int, group: ExtendedMetadataGroup, field: ExtendedMetadataField, index: int) str#
Get extended string metadata specified by the group, field, and index for the evaluation at the given index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
group (ExtendedMetadataGroup) – The group of the extended metadata.
field (ExtendedMetadataField) – The field of the extended metadata.
index (int) – The index of the extended metadata within the group and field.
- Returns:
The string values for the extended metadata.
- Return type:
str
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getFlattenedDataSourceData(evaluationIndex: int, varname: str, frameIdentifier: DataFrameID = DataFrameID.PRIMARY) Tuple[Tuple[int, ...], List[float] | List[str]]#
Get data source data as a 1-dimensional array. The output is a tuple of two lists, where the first list specifies the resulting dimensions of the data source data and the second list is the data.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the data source in the dataset.
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
A tuple containing the shape of the data source data as a tuple of integers and the flattened data as a list.
- Return type:
Tuple[Tuple[int, …], Union[List[float], List[str]]]
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
RuntimeError – If the variable is not an array variable.
- getItem(varname: str) DefinitionItem#
Get the
DefinitionIteminstance for the given varname.- Parameters:
varname (str) – The varname of the scalar variable or data source.
- Returns:
The
DefinitionIteminstance for the given varname.- Return type:
- Raises:
ValueError – If the variable does not exist in the dataset or if the varname does not correspond to a valid
DefinitionItem.RuntimeError – If the varname does not correspond to a valid
DefinitionItemin the dataset.
- getItemOptional(varname: str) DefinitionItem | None#
Get the
DefinitionIteminstance for the given varname if it exists, otherwise return None.- Parameters:
varname (str) – The varname of the scalar variable or data source.
- Returns:
The
DefinitionIteminstance for the given varname or None if it does not exist.- Return type:
Optional[api_objects.DefinitionItem]
- getIterationCount() int | None#
Get the number of iterations in the dataset.
- Returns:
The number of iterations.
- Return type:
int
- getIterationForEvaluation(evaluationIndex: int) int#
Get index of the iteration that the given evaluation belongs to.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
- Returns:
The iteration index for the evaluation.
- Return type:
int
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- getIterationIndexes() List[int]#
Get the list of indexes for all iterations in the dataset.
- Returns:
A list of iteration indexes (0-based).
- getLabel(varname: str) str#
Get the label for the item in the dataset with the corresponding varname.
- Parameters:
varname (str) – The varname of the item in the dataset.
- Returns:
The label of the item.
- Return type:
str
- Raises:
RuntimeError – If the variable does not exist in the dataset.
- getOptimalEvaluationIndexes(iterationIndex: int | None = None) List[int]#
” Get the indexes of the optimal evaluations after the given iteration. These are the non-dominated points after an iteration, and some or all may end up dominated after subsequent iterations. If no iteration index is provided, it defaults to the last iteration.
- Parameters:
iterationIndex (Optional[int]) – The iteration index (0-based). If None, defaults to the last iteration.
- Returns:
A list of evaluation indexes that are considered optimal for the specified iteration.
- Return type:
List[int]
- Raises:
IndexError – If the iteration index is out of bounds for the number of iterations.
- getOptimalIterationIndexes(iterationIndex: int | None = None) List[int]#
Get the indexes of the optimal iterations used by the given iteration.
- Parameters:
iterationIndex (Optional[int]) – The iteration index (0-based). If None, defaults to the last iteration.
- Returns:
A list of iteration indexes that are considered optimal for the specified iteration.
- Return type:
List[int]
- Raises:
IndexError – If the iteration index is out of bounds for the number of iterations
- getScalarVarnames() List[str]#
Get the varnames for all the scalar variables in the dataset.
Note
This includes inputs and outputs.
- Returns:
A list of varnames.
- Return type:
List[str]
- getSingleConstraintConditionForEvaluationIndex(evaluationIndex: int, constraintVarname: str) ConstraintCondition#
Get the constraint condition for a specific evaluation index and constraint variable.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
constraintVarname (str) – The varname of the constraint variable.
- Returns:
The constraint condition for the evaluation.
- Return type:
- Raises:
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
ValueError – If the variable does not exist in the dataset.
RuntimeError – If the variable is not a constraint variable.
- getStoredDataSourceData(evaluationIndex: int, varname: str, frameIdentifier: DataFrameID = DataFrameID.PRIMARY) Union[npt.NDArray[np.str_], npt.NDArray[np.float64]]#
Get datasource data for the given varname, exactly as it is stored.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the data source in the dataset.
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
The data source data as a NumPy array, without converting string data to its string representation.
- Return type:
typing.Union[npt.NDArray[np.str_], npt.NDArray[np.float64]]
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
RuntimeError – If the variable is not an array variable.
- getStoredEvaluationData(frameIdentifier: DataFrameID = DataFrameID.PRIMARY) Dict[str, List[float]]#
Get the stored evaluation values for all scalar variables in the dataset.
- Parameters:
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
The evaluation data without converting string data to it’s string representation.
- Return type:
Dict[str, List[float]]
- getStoredEvaluationValues(varname: str, frameIdentifier: DataFrameID = DataFrameID.PRIMARY) List[float]#
Get the stored evaluation values for a scalar variable in the dataset.
- Parameters:
varname (str) – The varname of the scalar variable in the dataset.
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
The evaluations values as they are stored, without converting string data to it’s string representation.
- Return type:
List[float]
- Raises:
ValueError – If the variable does not exist in the dataset.
- getStoredFlattenedDataSourceData(evaluationIndex: int, varname: str, frameIdentifier: DataFrameID = DataFrameID.PRIMARY) Tuple[Tuple[int, ...], List[float]]#
Get data source data exactly as it is stored as a 1-dimensional array. The output is a tuple of two lists, where the first list specifies the resulting dimensions of the data source data and the second list is the data.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the data source in the dataset.
frameIdentifier (DataFrameID) – The name of the data frame to get values from.
- Returns:
A tuple containing the shape of the data source data as a tuple of integers and the flattened data as a list, without converting string data to its string representation.
- Return type:
Tuple[Tuple[int, …], List[float]]
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
RuntimeError – If the variable is not an array variable.
- getVarnames() List[str]#
Get the varnames for all the items in the dataset.
Note
This includes inputs and outputs.
- Returns:
A list of varnames.
- Return type:
List[str]
- static intToFloatBitwise(value: int) float#
Convenience method to perform a bitwise conversion of an integer to a float.
- Parameters:
value (int) – The integer value to convert.
- Returns:
The float value obtained by interpreting the bits of the integer.
- Return type:
float
- Raises:
RuntimeError – If the conversion fails.
- isArrayVariable(varname: str) bool#
Check if the given varname corresponds to an array variable in the dataset.
- Parameters:
varname (str) – The varname of the variable to check.
- Returns:
True if the varname corresponds to an array variable, False otherwise.
- Return type:
bool
- isScalarVariable(varname: str) bool#
Check if the given varname corresponds to a scalar variable in the dataset.
- Parameters:
varname (str) – The varname of the variable to check.
- Returns:
True if the varname corresponds to a scalar variable, False otherwise.
- Return type:
bool
- setDataSourceData(evaluationIndex: int, varname: str, data: Union[npt.NDArray[np.str_], npt.NDArray[np.float64]], frameIdentifier: DataFrameID = DataFrameID.PRIMARY) None#
Set datasource data for the given varname and evaluation index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the data source in the dataset.
data (typing.Union[npt.NDArray[np.str_], npt.NDArray[np.float64]]) – The data to set for the given evaluation, as a NumPy array
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
RuntimeError – If the variable is not an array variable.
- setEvaluationValue(evaluationIndex: int, varname: str, value: float | int | str) None#
Set the evaluation value for a scalar variable at the given evaluation index.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the scalar variable in the dataset.
value (Union[float, int, str]) – The value to set for the given evaluation.
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
- setFlattenedDataSourceData(evaluationIndex: int, varname: str, data: Tuple[List[int], List[float] | List[str]], frameIdentifier: DataFrameID = DataFrameID.PRIMARY) None#
Set data source data as a 1-dimensional array. The input should be a tuple of two lists, where the first list specifies the resulting dimensions of the data source data and the second list is the data.
- Parameters:
evaluationIndex (int) – The evaluation index (0-based).
varname (str) – The varname of the data source in the dataset.
data (Tuple[Tuple[int, ...], Union[List[float], List[str]]]) – A list containing the shape of the data source data as a tuple of integers and the flattened data as a list.
- Raises:
ValueError – If the variable does not exist in the dataset.
IndexError – If the index is out of bounds for the number of evaluations in the dataset.
RuntimeError – If the variable is not an array variable.
- class EvaluationOriginInfo(originIndex: int, originName: str)#
Bases:
object- getOriginApproach() Approach#
Get the origin approach of the evaluation.
- Returns:
The origin approach.
- Return type:
- getOriginApproachVarname() str#
Get the origin approach varname of the evaluation.
- Returns:
The origin approach varname.
- Return type:
str
- getOriginIndex() int#
Get the origin index of the evaluation.
- Returns:
The origin index.
- Return type:
int
- getOriginType() EvaluationOriginType#
Get the origin type of the evaluation.
- Returns:
The origin type.
- Return type:
- enum EvaluationOriginType(value)#
Bases:
EnumValid values are as follows:
- MANUAL = <EvaluationOriginType.MANUAL: '@manual'>#
- DESIGN = <EvaluationOriginType.DESIGN: '@design'>#
- EVALUATION = <EvaluationOriginType.EVALUATION: '@eval'>#
The
Enumand its members also have the following methods:- getLabel() str#
- enum ExtendedMetadataField(value)#
Bases:
IntEnum- Member Type:
int
Valid values are as follows:
- WRITE = <ExtendedMetadataField.WRITE: 1>#
- EXECUTE = <ExtendedMetadataField.EXECUTE: 2>#
- EXTRACT = <ExtendedMetadataField.EXTRACT: 3>#
- TIME_WRITE = <ExtendedMetadataField.TIME_WRITE: 4>#
- TIME_EXECUTE = <ExtendedMetadataField.TIME_EXECUTE: 5>#
- TIME_EXTRACT = <ExtendedMetadataField.TIME_EXTRACT: 6>#
- TIME_PURGE = <ExtendedMetadataField.TIME_PURGE: 7>#
- enum ExtendedMetadataGroup(value)#
Bases:
IntEnum- Member Type:
int
Valid values are as follows:
- MODEL = <ExtendedMetadataGroup.MODEL: 1>#
- enum MetadataKey(value)#
Bases:
IntEnum- Member Type:
int
Valid values are as follows:
- STATE = <MetadataKey.STATE: 1>#
- INVALID = <MetadataKey.INVALID: 0>#
- WRITE = <MetadataKey.WRITE: 2>#
- EXECUTE = <MetadataKey.EXECUTE: 3>#
- EXTRACT = <MetadataKey.EXTRACT: 4>#
- OPT_OPTIMAL = <MetadataKey.OPT_OPTIMAL: 5>#
- OPT_ITERATION = <MetadataKey.OPT_ITERATION: 6>#
- STEP_MAJOR = <MetadataKey.STEP_MAJOR: 7>#
- OPT_GLOBAL_CONTRAINT_VIOLATION = <MetadataKey.OPT_GLOBAL_CONTRAINT_VIOLATION: 8>#
- OPT_CONSTRAINT_VIOLATION_CODE = <MetadataKey.OPT_CONSTRAINT_VIOLATION_CODE: 9>#
- OPT_CONSTRAINT_VIOLATION_VALUE = <MetadataKey.OPT_CONSTRAINT_VIOLATION_VALUE: 10>#
- OPT_MATRIX_VALIDATION = <MetadataKey.OPT_MATRIX_VALIDATION: 11>#
- RUN_TYPE = <MetadataKey.RUN_TYPE: 12>#
- POST_PROCESS_STATE = <MetadataKey.POST_PROCESS_STATE: 13>#
- RUN_USER_COMMENT = <MetadataKey.RUN_USER_COMMENT: 14>#
- TIME = <MetadataKey.TIME: 15>#
- VERIFY_REFERENCE_INDEX = <MetadataKey.VERIFY_REFERENCE_INDEX: 16>#
- ADAPTIVE_ITERATION = <MetadataKey.ADAPTIVE_ITERATION: 17>#
- ADAPTIVE_LAST_INCLUSION = <MetadataKey.ADAPTIVE_LAST_INCLUSION: 18>#
- ADAPTIVE_PRIMARY_METRIC = <MetadataKey.ADAPTIVE_PRIMARY_METRIC: 19>#
- QUEUE_STATE = <MetadataKey.QUEUE_STATE: 20>#
- QUEUE_EVALUATION_INDEX = <MetadataKey.QUEUE_EVALUATION_INDEX: 21>#
- USER_REQUEST = <MetadataKey.USER_REQUEST: 22>#
- RUN_SYSTEM_COMMENT = <MetadataKey.RUN_SYSTEM_COMMENT: 23>#
- DUPLICATE_TYPE = <MetadataKey.DUPLICATE_TYPE: 24>#
- DUPLICATE_INDEX = <MetadataKey.DUPLICATE_INDEX: 25>#
- PERIODIC_REPORT = <MetadataKey.PERIODIC_REPORT: 26>#
- ORIGIN_INDEX = <MetadataKey.ORIGIN_INDEX: 27>#
- ORIGIN_STRING = <MetadataKey.ORIGIN_STRING: 28>#
- enum VariableCategory(value)#
Bases:
IntEnum- Member Type:
int
Valid values are as follows:
- INVALID = <VariableCategory.INVALID: 0>#
- DESIGN_VARIABLE = <VariableCategory.DESIGN_VARIABLE: 202>#
- RESPONSE = <VariableCategory.RESPONSE: 2202>#
- GRADIENT = <VariableCategory.GRADIENT: 2302>#
- CONSTRAINT = <VariableCategory.CONSTRAINT: 2402>#
- OBJECTIVE = <VariableCategory.OBJECTIVE: 2502>#
- PERCENTILE = <VariableCategory.PERCENTILE: 2602>#
- FIT_RESPONSE = <VariableCategory.FIT_RESPONSE: 2702>#
- OBJECTIVE_FUNCTION = <VariableCategory.OBJECTIVE_FUNCTION: 2802>#
- TARGET_VALUE = <VariableCategory.TARGET_VALUE: 2902>#
- NORMALIZED_TARGET = <VariableCategory.NORMALIZED_TARGET: 3002>#
- SYSTEM_RELIABILITY = <VariableCategory.SYSTEM_RELIABILITY: 3102>#
- STANDARD_DEVIATION_OF_OBJECTIVE = <VariableCategory.STANDARD_DEVIATION_OF_OBJECTIVE: 3202>#
- INTERNAL = <VariableCategory.INTERNAL: 9900>#
- DATA_SOURCE = <VariableCategory.DATA_SOURCE: 10002>#
- FIT_DATA_SOURCE = <VariableCategory.FIT_DATA_SOURCE: 10102>#
The
Enumand its members also have the following methods:- classmethod fromInternalCategory(internalCategory: int) VariableCategory#